Cable bacteria (CB) are filamentous Desulfobulbaceae that split the energy-conserving reaction of sulfide oxidation into two half reactions occurring in distinct cells. CB can use nitrate, but the reduction pathway is unknown, making it difficult to assess their direct impact on the N-cycle. Here we show that the freshwater cable bacterium Ca.
View Article and Find Full Text PDFCable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored.
View Article and Find Full Text PDFCable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca.
View Article and Find Full Text PDFThe electric wires of cable bacteria possibly support a unique respiration mode with a few oxygen-reducing cells flaring off electrons, while oxidation of the electron donor and the associated energy conservation and growth is allocated to other cells not exposed to oxygen. Cable bacteria are centimeter-long, multicellular, filamentous Desulfobulbaceae that transport electrons across oxic-anoxic interfaces in aquatic sediments. From observed distortions of the oxic-anoxic interface, we derived oxygen consumption rates of individual cable bacteria and found biomass-specific rates of unheard magnitude in biology.
View Article and Find Full Text PDFMethane is the second most important greenhouse gas after carbon dioxide and approximately 11% of the global anthropogenic methane emissions originate from rice fields. Sulfate amendment is a mitigation strategy to reduce methane emissions from rice fields because sulfate reducers and methanogens compete for the same substrates. Cable bacteria are filamentous bacteria known to increase sulfate levels via electrogenic sulfide oxidation.
View Article and Find Full Text PDFCable bacteria are filamentous members of the Desulfobulbaceae family that oxidize sulfide with oxygen or nitrate by transferring electrons over centimeter distances in sediments. Recent studies show that freshwater sediments can support populations of cable bacteria at densities comparable to those found in marine environments. This is surprising since sulfide availability is presumably low in freshwater sediments due to sulfate limitation of sulfate reduction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Electrothrix and 1 freshwater Electronema species.
View Article and Find Full Text PDFCable bacteria have been reported in sediments from marine and freshwater locations, but the environmental factors that regulate their growth in natural settings are not well understood. Most prominently, the physiological limit of cable bacteria in terms of oxygen availability remains poorly constrained. In this study, we investigated the presence, activity and diversity of cable bacteria in relation to a natural gradient in bottom water oxygenation in a depth transect of the Eastern Gotland Basin (Baltic Sea).
View Article and Find Full Text PDFA substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids.
View Article and Find Full Text PDFMeasurements of porewater O2, pH, and H2S microprofiles in intact sediment cores collected in a northern saltmarsh in the St. Lawrence Estuary (Quebec, Canada) revealed the occurrence of electrogenic sulfur oxidation (e-SOx) by filamentous "cable" bacteria in submerged marsh pond sediments in the high marsh. In summer, the geochemical fingerprint of e-SOx was apparent in intact cores, while in fall, cable bacteria were detected by fluorescence in situ hybridization and the characteristic geochemical signature of e-SOx was observed only upon prolonged incubation.
View Article and Find Full Text PDFThe microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2015
In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments.
View Article and Find Full Text PDFThe discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption.
View Article and Find Full Text PDFFilamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide.
View Article and Find Full Text PDFFilamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2).
View Article and Find Full Text PDFOxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria.
View Article and Find Full Text PDFAnaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox bacteria in marine sediments of the Gullmar Fjord, and compared the results obtained with each technique. (15) N labelling experiments showed that nitrogen removal through N2 production was essentially limited to the upper 2 cm of the sediment, where anammox contributed 23-47% of the total production.
View Article and Find Full Text PDFEvidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was selected for this study and was shown to contain a high amount of ammonium (6.2-178.
View Article and Find Full Text PDFKnowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production.
View Article and Find Full Text PDF(15)NO(3)(-) isotope labelling experiments were performed to investigate foraminiferal nitrate uptake strategies and the role of pseudopodial networks in nitrate uptake. Globobulimina turgida were placed below the nitrate penetration depth in homogenized sediment cores incubated in artificial seawater containing (15)NO(3)(-) . A nylon net prevented the vertical migration of foraminifera to strata containing nitrate and oxygen, but allowed potential access to such strata by extension of pseudopods.
View Article and Find Full Text PDFSome bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment.
View Article and Find Full Text PDFBenthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait.
View Article and Find Full Text PDF