Publications by authors named "Nils Neye"

Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion.

View Article and Find Full Text PDF

Purpose: Bioactive NO carriers in circulating blood formed during NO inhalation selectively distribute blood flow to areas in need, and may thus improve collateral perfusion to the area-at-risk in acute myocardial infarction (AMI). Here, we tested the hypothesis that NO inhalation during the ischemic phase of AMI may improve left ventricular function and reduce infarct size in rats.

Methods: Following left anterior descending coronary artery (LAD) occlusion, rats received 50 ppm NO for 2 h of ischemia, during subsequent 3 h of reperfusion, or for 5 h of ischemia and reperfusion.

View Article and Find Full Text PDF

Although the formation of hydrostatic lung edema is generally attributed to imbalanced Starling forces, recent data show that lung endothelial cells respond to increased vascular pressure and may thus regulate vascular permeability and edema formation. In combining real-time optical imaging of the endothelial Ca(2+) concentration ([Ca(2+)](i)) and NO production with filtration coefficient (K(f)) measurements in the isolated perfused lung, we identified a series of endothelial responses that constitute a negative-feedback loop to protect the microvascular barrier. Elevation of lung microvascular pressure was shown to increase endothelial [Ca(2+)](i) via activation of transient receptor potential vanilloid 4 (TRPV4) channels.

View Article and Find Full Text PDF