Background: The use of machine learning is becoming increasingly popular in many disciplines, but there is still an implementation gap of machine learning models in clinical settings. Lack of trust in models is one of the issues that need to be addressed in an effort to close this gap. No models are perfect, and it is crucial to know in which use cases we can trust a model and for which cases it is less reliable.
View Article and Find Full Text PDFIntroduction: Postoperative delirium is common in older cardiac surgery patients and associated with negative short-term and long-term outcomes. The alpha-2-adrenergic receptor agonist dexmedetomidine shows promise as prophylaxis and treatment for delirium in intensive care units (ICU) and postoperative settings. Clonidine has similar pharmacological properties and can be administered both parenterally and orally.
View Article and Find Full Text PDFBackground: Machine learning (ML) holds the promise of becoming an essential tool for utilising the increasing amount of clinical data available for analysis and clinical decision support. However, the lack of trust in the models has limited the acceptance of this technology in healthcare. This mistrust is often credited to the shortage of model explainability and interpretability, where the relationship between the input and output of the models is unclear.
View Article and Find Full Text PDFBackground: Circulatory failure after out-of-hospital cardiac arrest (OHCA) as part of the postcardiac arrest syndrome (PCAS) is believed to be caused by an initial myocardial depression that later subsides into a superimposed vasodilatation. However, the relative contribution of myocardial dysfunction and systemic inflammation has not been established. Our objective was to describe the macrocirculatory and microcirculatory failure in PCAS in more detail.
View Article and Find Full Text PDFBackground: Whole body ischemia and reperfusion injury after cardiac arrest leads to the massive inflammation clinically manifested in the post-cardiac arrest syndrome. Previous studies on the inflammatory effect on circulatory failure after cardiac arrest have either investigated a selected patient group or a limited part of the inflammatory mechanisms. We examined the association between cardiac arrest characteristics and inflammatory biomarkers, and between inflammatory biomarkers and circulatory failure after cardiac arrest, in an unselected patient cohort.
View Article and Find Full Text PDFBackground: Circulatory failure frequently occurs after out-of-hospital cardiac arrest (OHCA) and is part of post-cardiac arrest syndrome (PCAS). The aim of this study was to investigate circulatory disturbances in PCAS by assessing the circulatory trajectory during treatment in the intensive care unit (ICU).
Methods: This was a prospective single-center observational cohort study of patients after OHCA.
Background: The correlation between pulse transit time and blood pressure has been proposed as a route to measure continuous non-invasive blood pressure. We investigated whether pulse transit time trends could model blood pressure trends during episodes of rapid declines in blood pressure.
Methods: From the Medical Information Mart for Intensive Care waveform database we identified substantial blood pressure reductions.
It is well-known that blood glucose oscillates with a period of approximately 15 min (900 s) and exhibits an overall complex behaviour in intact organisms. This complexity is not thoroughly studied, and thus, we aimed to decipher the frequency bands entailed in blood glucose regulation. We explored high-resolution blood glucose time-series sampled using a novel continuous intravascular sensor in four pigs under general anaesthesia for almost 24 hours.
View Article and Find Full Text PDFBackground: The post cardiac arrest syndrome (PCAS) is responsible for the majority of in-hospital deaths following cardiac arrest (CA). The major elements of PCAS are anoxic brain injury and circulatory failure.
Objective: This study aimed to investigate the clinical characteristics of circulatory failure and inflammatory responses after out-of-hospital cardiac arrest (OHCA) and to identify patterns of circulatory and inflammatory responses, which may predict circulatory deterioration in PCAS.
Hemorrhagic shock is clinically observed as changes in macrocirculatory indices, while its main pathological constituent is cellular asphyxia due to microcirculatory alterations. The coherence between macro- and microcirculatory changes in different shock states has been questioned. This also applies to the hemorrhagic shock.
View Article and Find Full Text PDFBackground: The aim of this study was to construct a non-invasive model for acute right ventricular afterload increase by hypoxic pulmonary vasoconstriction. Intact animal models are vital to improving our understanding of the pathophysiology of acute right ventricular failure. Acute right ventricular failure is caused by increased afterload of the right ventricle by chronic or acute pulmonary hypertension combined with regionally or globally reduced right ventricular contractile capacity.
View Article and Find Full Text PDF