To develop a comprehensive understanding of pharmaceutical drug substance manufacturing (DSM) processes, we conducted a data mining study to examine 50 new drug applications (NDAs) approved in 2010-2016. We analyzed the prevalence of several frequently deployed in-process control (IPC) techniques and postreaction workup procedures, as well as the operational conditions specified for reactions and workups. Our findings show that crystallization and high-performance liquid chromatography (HPLC) were the most commonly used workup steps and in-process controls, respectively, in drug substance manufacturing.
View Article and Find Full Text PDFBackground: Identifying stable gene lists for diagnosis, prognosis prediction, and treatment guidance of tumors remains a major challenge in cancer research. Microarrays measuring differential gene expression are widely used and should be versatile predictors of disease and other phenotypic data. However, gene expression profile studies and predictive biomarkers are often of low power, requiring numerous samples for a sound statistic, or vary between studies.
View Article and Find Full Text PDFCell culture technology has become a widely accepted method used to derive therapeutic and diagnostic protein products. Mammalian cells adapted to grow in bioreactors now play an integral role in the development of these biologicals. A major limiting factor determining the output efficiency of mammalian cell cultures however, is apoptosis or programmed cell death.
View Article and Find Full Text PDFThe cell density is an inherent constraint in commercial mammalian cell cultures. Here, we describe a cell engineering strategy utilizing the overexpression of the E2F-1 cell cycle transcription factor in CHO DG44 cells that produce a monoclonal antibody in serum-free, suspension culture. Stable pools and cell lines expressing E2F-1 were isolated that attained viable cell densities 20% higher than control cell lines and continued proliferation for an additional day in batch culture.
View Article and Find Full Text PDFMammalian cell cultures are integral to the production of therapeutic and diagnostic proteins. A common problem encountered in culturing these cell lines, however, is a loss in viability at later stages of the cell culture process. In this study the effects of three newly synthesized chemical caspase inhibitors were investigated for their capacity to inhibit cell death.
View Article and Find Full Text PDFThe ability to regulate apoptosis in mammalian cell cultures represents one approach to developing more economical and efficient processes. Genetic modification of cells using anti-apoptotic genes is one method that may be used to improve cellular performance. This study investigates a method to inhibit upstream apoptosis pathways through the overexpression of MDM2, an E3 ubiquitin ligase for p53.
View Article and Find Full Text PDFTrends Biotechnol
April 2004
Mammalian cell culture is widely used to produce valuable biotherapeutics including monoclonal antibodies, vaccines and growth factors. Industrial cell lines such as Chinese hamster ovary (CHO), mouse myeloma (NS0), baby hamster kidney (BHK) and human embryonic kidney (HEK)-293 retain many molecular components of the apoptosis cascade. Consequently, these cells often undergo programmed cell death upon exposure to stresses encountered in bioreactors.
View Article and Find Full Text PDF