Publications by authors named "Nilofar Raeofy"

Sulfur-containing volatile organic compounds emitted during wildfire events, such as dimethyl sulfide, are known to form secondary aerosols containing inorganic sulfate (SO ) and surfactant-like organic compounds; however, little is known about the fate of sulfur in other emitted reduced organosulfur species. This study aimed to determine the sulfurous product distribution resulting from the nighttime oxidation of thiophene as a model system. Ion chromatography (IC) and aerosol mass spectrometry (a mini aerosol mass spectrometer, mAMS) were used to constrain the proportions of sulfurous compounds produced under wildfire-relevant conditions ([NO]/[O] = 0.

View Article and Find Full Text PDF

Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation.

View Article and Find Full Text PDF