The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target.
View Article and Find Full Text PDFNatural products (NPs) produced by bacteria, fungi and plants are a major source of drug leads. species are particularly important in this regard as they produce numerous natural products with prominent bioactivities. Here we report a fully a utomated, s calable and high-throughput platform for discovery of bioactive n atural p roducts in (FAST-NPS).
View Article and Find Full Text PDFChemically modified mRNAs hold great potential for therapeutic applications . Currently, the base modification scheme largely preserves the canonical Watson-Crick base pairing, thus missing one mode of mRNA modulation by altering its secondary structure. Here we report the incorporation of base Z (2-aminoadenine) into mRNA to create Z-mRNA with improved translational capacity, decreased cytotoxicity, and drastically reduced immunogenicity compared to the unmodified mRNA in mammalian cells.
View Article and Find Full Text PDFDirected evolution has become one of the most successful and powerful tools for protein engineering. However, the efforts required for designing, constructing, and screening a large library of variants can be laborious, time-consuming, and costly. With the recent advent of machine learning (ML) in the directed evolution of proteins, researchers can now evaluate variants in silico and guide a more efficient directed evolution campaign.
View Article and Find Full Text PDFPlasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high throughput manner.
View Article and Find Full Text PDFPleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employ a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates. Of 67 human PH domain-containing proteins initially examined, 36 (54%) are found to have affinity for PIPs with various specificity, the majority of which have not been reported before.
View Article and Find Full Text PDFSkeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice.
View Article and Find Full Text PDFTNF-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, although non-apoptotic functions have also been reported for this cytokine in various cell types. TRAIL and its receptor TRAIL-R2 are expressed in skeletal muscles, but a potential role of muscle-derived TRAIL in myogenesis has not been explored. Here we report that TRAIL is an autocrine regulator of myogenic differentiation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Signal transduction and cytoskeleton networks in a wide variety of cells display excitability, but the mechanisms are poorly understood. Here, we show that during random migration and in response to chemoattractants, cells maintain complementary spatial and temporal distributions of Ras activity and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P]. In addition, depletion of PI(3,4)P by disruption of the 5-phosphatase, Dd5P4, or by recruitment of 4-phosphatase INPP4B to the plasma membrane, leads to elevated Ras activity, cell spreading, and altered migratory behavior.
View Article and Find Full Text PDFSkeletal muscle in adults retains a robust ability to regenerate after injury, which progressively declines with age. Many of the regulators of skeletal myogenesis are unknown or incompletely understood. Intriguingly, muscle cells secrete a wide variety of factors, such as cytokines, which can influence muscle development and regeneration in an autocrine or paracrine manner.
View Article and Find Full Text PDF