Publications by authors named "Nilesh D Kashikar"

Background: Left ventricular hypertrophy and heart failure with preserved ejection fraction (HFpEF) are primary manifestations of the cardiorenal syndrome in patients with chronic kidney disease (CKD). Therapies that improve morbidity and mortality in HFpEF are lacking. Cell-based therapies promote cardiac repair in ischemic and non-ischemic cardiomyopathies.

View Article and Find Full Text PDF

Background: The combination of autologous mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs) synergistically reduces scar size and improves cardiac function in ischemic cardiomyopathy. Whereas allogeneic (allo-)MSCs are immunoevasive, the capacity of CSCs to similarly elude the immune system remains controversial, potentially limiting the success of allogeneic cell combination therapy (ACCT).

Objectives: This study sought to test the hypothesis that ACCT synergistically promotes cardiac regeneration without provoking immunologic reactions.

View Article and Find Full Text PDF

Introduction: Hepatocellular adenoma (HA) is an uncommon benign hepatic tumour with the potential for malignant change or spontaneous haemorrhage. Resection has been the recommended treatment, but outcomes with other approaches are ill defined.

Methods: Demographic and outcomes data were retrospectively collected on patients diagnosed with HA at a tertiary hepatobiliary centre from 1992-2011 whom underwent resection, bland embolization or observation.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK3β) can regulate a broad range of cellular processes in a variety of cell types and tissues through its ability to phosphorylate its substrates in a cell- and time-specific manner. Although it is known that Axin and presenilin help to recruit β-catenin/Smad3 and tau protein to GSK3β, respectively, it is not clear how many of the other GSK3β substrates are recruited to it. Here, we have established the binding of GSK3β with a novel scaffold protein, STRAP, through its WD40 domains.

View Article and Find Full Text PDF

STRAP is a ubiquitous WD40 protein that has been implicated in tumorigenesis. Previous studies suggest that STRAP imparts oncogenic characteristics to cells by promoting ERK and pRb phosphorylation. While these findings suggest that STRAP can activate mitogenic signaling pathways, the effects of STRAP on other MAPK pathways have not been investigated.

View Article and Find Full Text PDF

Background & Aims: Transforming growth factor (TGF)-beta signaling occurs through Smads 2/3/4, which translocate to the nucleus to regulate transcription; TGF-beta has tumor-suppressive effects in some tumor models and pro-metastatic effects in others. In patients with colorectal cancer (CRC), mutations or reduced levels of Smad4 have been correlated with reduced survival. However, the function of Smad signaling and the effects of TGF-beta-receptor kinase inhibitors have not been analyzed during CRC metastasis.

View Article and Find Full Text PDF

The stromal tissue, made of extracellular matrix and mesenchymal cells, is vital for the functional design of all complex tissues. Fibroblasts are key components of stromal tissue and play a crucial role during organ development, wound repair, angiogenesis and fibrosis. We have previously reported the identification of a novel WD-domain protein, STRAP(1) that inhibits transforming growth factor-beta (TGF-beta) signaling and enhances tumorigenicity via TGF-beta-dependent and TGF-beta-independent mechanisms.

View Article and Find Full Text PDF