Publications by authors named "Nilda V Ayala-Nunez"

Transmigration of circulating monocytes from the bloodstream to tissues represents an early hallmark of inflammation. This process plays a pivotal role during viral neuroinvasion, encephalitis, and HIV-associated neurocognitive disorders. How monocytes locally unzip endothelial tight junction-associated proteins (TJAPs), without perturbing impermeability, to reach the central nervous system remains poorly understood.

View Article and Find Full Text PDF

Background And Aims: Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated.

View Article and Find Full Text PDF

Background Information: Claudin-1 (CLDN1) is a four-span transmembrane protein localised at cell-cell tight junctions (TJs), playing an important role in epithelial impermeability and tissue homoeostasis under physiological conditions. Moreover, CLDN1 expression is up-regulated in several cancers, and the level of CLDN1 expression has been proposed as a prognostic marker of patient survival.

Results: Here, we generated and characterised a novel reporter cell line expressing endogenous fluorescent levels of CLDN-1, allowing dynamic monitoring of CLDN-1 expression levels.

View Article and Find Full Text PDF

Zika virus (ZIKV) invades and persists in the central nervous system (CNS), causing severe neurological diseases. However the virus journey, from the bloodstream to tissues through a mature endothelium, remains unclear. Here, we show that ZIKV-infected monocytes represent suitable carriers for viral dissemination to the CNS using human primary monocytes, cerebral organoids derived from embryonic stem cells, organotypic mouse cerebellar slices, a xenotypic human-zebrafish model, and human fetus brain samples.

View Article and Find Full Text PDF

Antibody-dependent enhancement of dengue virus (DENV) infection plays an important role in the exacerbation of DENV-induced disease. To understand how antibodies influence the fate of DENV particles, we explored the cell entry pathway of DENV in the absence and presence of antibodies in macrophage-like P388D1 cells. Recent studies unraveled that both mature and immature DENV particles contribute to ADE, hence, both particles were studied.

View Article and Find Full Text PDF

Unlabelled: Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by which CHIKV enters the cell: several studies suggest that CHIKV enters via clathrin-mediated endocytosis, while others show that it enters independently of clathrin.

View Article and Find Full Text PDF

Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier that SA-17, a doxorubicin derivative, efficiently inhibits the in vitro infection of DENV and yellow fever virus.

View Article and Find Full Text PDF

There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells.

View Article and Find Full Text PDF

Cross-reactive dengue virus (DENV) antibodies directed against the envelope (E) and precursor membrane (prM) proteins are believed to contribute to the development of severe dengue disease by facilitating antibody-dependent enhancement of infection. We and others recently demonstrated that anti-prM antibodies render essentially non-infectious immature DENV infectious in Fcγ-receptor-expressing cells. Immature DENV particles are abundantly present in standard (st) virus preparations due to inefficient processing of prM to M during virus maturation.

View Article and Find Full Text PDF

A variety of approaches can be applied to investigate the multiple steps and interactions that occur during virus entry into the host cell. Single-virus tracking is a powerful real-time imaging technique that offers the possibility to monitor virus-cell binding, internalization, intracellular trafficking behavior, and the moment of membrane fusion of single virus particles in living cells. Here we describe the development and applications of a single-virus tracking assay based on the use of DiD-labeled dengue virus (DENV) in BS-C-1 cells.

View Article and Find Full Text PDF

Background: Silver nanoparticles have proven to exert antiviral activity against HIV-1 at non-cytotoxic concentrations, but the mechanism underlying their HIV-inhibitory activity has not been not fully elucidated. In this study, silver nanoparticles are evaluated to elucidate their mode of antiviral action against HIV-1 using a panel of different in vitro assays.

Results: Our data suggest that silver nanoparticles exert anti-HIV activity at an early stage of viral replication, most likely as a virucidal agent or as an inhibitor of viral entry.

View Article and Find Full Text PDF