An assembly of metal nanoclusters driven by appropriate surface ligands and solvent environment may engender entirely new photoluminescence (PL). Herein, we first synthesize histidine (His) stabilized copper nanoparticles (CuNPs) and, subsequently, copper nanoclusters (CuNCs) from it using 3-mercaptopropionic acid (MPA) as an etchant. The CuNCs originally emit bluish-green (λ=470 nm) PL with a low quantum yield (QY∼1.
View Article and Find Full Text PDFNanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g(0)] and the associated diffusion timescale (τ) of their FCS curves show substantial dependency on pump intensity (I). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior.
View Article and Find Full Text PDFAttention typically reduces power in the alpha (8-12 Hz) band and increases power in gamma (>30 Hz) band in brain signals, as reported in macaque local field potential (LFP) and human electro/magneto-encephalogram (EEG/MEG) studies. In addition, EEG studies often use flickering stimuli that produce a specific measure called steady-state-visually-evoked-potential (SSVEP), whose power also increases with attention. However, effectiveness of these neural measures in capturing attentional modulation is unknown since stimuli and task paradigms vary widely across studies.
View Article and Find Full Text PDFA N-doped carbon dot (NCD) has been synthesized via a simplistic one-step hydrothermal technique using l-aspartic acid and 3,6-diaminoacridine hydrochloride. The NCDs exhibit a high quantum yield (22.7%) and excellent optical stability in aqueous media.
View Article and Find Full Text PDFRecently, multimodal detection of analytes through a single nanoprobe has become an eminent approach for researchers. Herein a fluorescent nanoprobe, functionalized-GQD (F-GQD), has been designed through edge functionalization of graphene quantum dots (GQDs) by 2,6-diaminopyridine molecules. The fluorescence of F-GQD is quite sensitive to medium pH, making it a suitable pH sensor within the pH range 2-6.
View Article and Find Full Text PDFThe emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio ( R) (intensity maximum of the protonated band/intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of a ratio is only limited to the interpretation of steady-state fluorescence spectra.
View Article and Find Full Text PDF