Publications by authors named "Nilamuni De Silva"

Fibrillation of proteins and polypeptides, which leads to the deposition of plaques in cells and tissues has been widely associated with many neuropathological diseases. Inhibition of protein misfolding and aggregation is crucial for the prevention and treatment of these conditions. The growing interest in identifying inhibitor molecules to prevent the formation of fibrils has led to the results highlighted in this study.

View Article and Find Full Text PDF

Here, we report a microwave-assisted, one-pot, three-component, 1,3-dipolar cycloaddition reaction to produce highly regioselective and stereoselective bis-spirooxindoles as potential inhibitors against amyloid-β fibrillation. Ease of synthesis, promising anti-amyloidogenic activity, low toxicity, and in vitro blood brain barrier permeability makes these compounds attractive therapeutic leads to treat Alzheimer's disease.

View Article and Find Full Text PDF

A library of Sox-pyrrolizidines was rapidly prepared by microwave-assisted, one-pot, three-component, 1,3-dipolar cycloaddition of azomethine ylides from l-proline and isatin, with various β-nitrostyrenes. Nitro-Sox compounds, 4b, 4d and 4e inhibit HEWL amyloid fibril formation by ThT studies with percentages of fluorescence intensity of 55.4, 42.

View Article and Find Full Text PDF

The U rhynchophylla, U tomentosa, Isatis indigotica Fortune, Voacanga Africana, herbal constituents, fungal extracts from Aspergillus duricaulis culture media, include spirooxindoles, polyphenols or bridged spirocyclic alkaloids. Their constituents exhibit specific and synergistic multiple neuroprotective properties including inhibiting of Aβ fibril induced cytotoxicity, NMDA receptor inhibition in mice models of Alzheimer's disease (AD). The pioneering research from Woodward to Waldmann has advanced the synthesis of spirocyclic alkaloids.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs), which typically disrupt the bacterial wall prompting leakage or lysis of the cell, form a growing contingent in the arsenal against antibiotic resistant bacteria. The effectiveness of AMPs is, however, hampered by their low solubility, general chemical and physical instability, and short half-life in vivo. Lipid nanocarriers such as cubosomes are effective at encapsulating and protecting proteins while simultaneously showing promise in delivery applications.

View Article and Find Full Text PDF