Publications by authors named "Nil Gurel"

Importance: Sham-controlled trials are needed to characterize the effect of hypoglossal nerve stimulation (HGNS) therapy on cardiovascular end points in patients with moderate-severe obstructive sleep apnea (OSA).

Objective: To determine the effect of therapeutic levels of HGNS, compared to sham levels, on blood pressure, sympathetic activity, and vascular function.

Design, Setting, And Participants: This double-blind, sham-controlled, randomized crossover therapy trial was conducted from 2018 to 2022 at 3 separate academic medical centers.

View Article and Find Full Text PDF
Article Synopsis
  • Transcutaneous cervical vagus nerve stimulation (tcVNS) is explored as a treatment for stress-related psychiatric disorders, with ghrelin identified as a possible stress biomarker.
  • A randomized double-blind study found that tcVNS lowers ghrelin levels significantly during and after stress-inducing tasks compared to a sham treatment.
  • The study suggests that tcVNS helps regulate hormonal responses to stress, although there are limitations such as measurement timing and the stimulation focused only on the left vagus nerve.
View Article and Find Full Text PDF

Background: Posttraumatic stress disorder (PTSD) is associated with changes in multiple neurophysiological systems, including verbal declarative memory deficits. Vagus Nerve Stimulation (VNS) has been shown in preliminary studies to enhance function when paired with cognitive and motor tasks. The purpose of this study was to analyze the effect of transcutaneous cervical VNS (tcVNS) on attention, declarative and working memory in PTSD patients.

View Article and Find Full Text PDF

Non-invasive continuous blood pressure monitoring remains elusive. There has been extensive research using the photoplethysmographic (PPG) waveform for blood pressure estimation, but improvements in accuracy are still needed before clinical use. Here we explored the use of an emerging technique, speckle contrast optical spectroscopy (SCOS), for blood pressure estimation.

View Article and Find Full Text PDF

Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown.

View Article and Find Full Text PDF

Pre-ejection period (PEP), an indicator of sympathetic nervous system activity, is useful in psychophysiology and cardiovascular studies. Accurate PEP measurement is challenging and relies on robust identification of the timing of aortic valve opening, marked as the B point on impedance cardiogram (ICG) signals. The ICG sensitivity to noise and its waveform's morphological variability makes automated B point detection difficult, requiring inefficient and cumbersome expert visual annotation.

View Article and Find Full Text PDF

Neural control of the heart involves continuous modulation of cardiac mechanical and electrical activity to meet the organism's demand for blood flow. The closed-loop control scheme consists of interconnected neural networks with central and peripheral components working cooperatively with each other. These components have evolved to cooperate control of various aspects of cardiac function, which produce measurable "functional" outputs such as heart rate and blood pressure.

View Article and Find Full Text PDF

Cardiovascular and psychiatric disorders are among the most commonly treated conditions worldwide. Research in neurocardiology, psychiatry, and epidemiology have defined bidirectional relationships between psychiatric disorders and heart disease, affirming the role of impaired autonomic nervous system, or dysautonomia in the prognosis and development in these disorders. These studies have fueled rapid clinical translation of experimental findings, with potential to complement existing pharmacological therapies.

View Article and Find Full Text PDF

Pre-ejection period (PEP) is an index of sympathetic nervous system activity that can be computed from electrocardiogram (ECG) and impedance cardiogram (ICG) signals, but sensitive to speech/motion artifact. We sought to validate an ICG noise removal method, three-stage ensemble-average algorithm (TEA), in data acquired from a clinical trial comparing active versus sham non-invasive vagal nerve stimulation (tcVNS) after standardized speech stress. We first compared TEA's performance versus the standard conventional ensemble-average algorithm (CEA) approach to classify noisy ICG segments.

View Article and Find Full Text PDF

Research has shown that transcutaneous cervical vagus nerve stimulation (tcVNS) yields downstream changes in peripheral physiology in individuals afflicted with posttraumatic stress disorder (PTSD). While the cardiovascular effects of tcVNS have been studied broadly in prior work, the specific effects of tcVNS on the reciprocal of the pulse transit time (1/PTT) remain unknown. By quantifying detectable effects, tcVNS can be further evaluated as a counterbalance to sympathetic hyperactivity during distress - specifically, we hypothesized that tcVNS would inhibit 1/PTT responses to traumatic stress.

View Article and Find Full Text PDF

Maladaptation of the sympathetic nervous system contributes to the progression of cardiovascular disease and risk for sudden cardiac death, the leading cause of mortality worldwide. Axonal modulation therapy (AMT) directed at the paravertebral chain blocks sympathetic efferent outflow to the heart and maybe a promising strategy to mitigate excess disease-associated sympathoexcitation. The present work evaluates AMT, directed at the sympathetic chain, in blocking sympathoexcitation using a porcine model.

View Article and Find Full Text PDF

Background: Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD.

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress.

View Article and Find Full Text PDF

Objective: Variations in respiration patterns are a characteristic response to distress due to underlying neurorespiratory couplings. Yet, no work to date has quantified respiration pattern variability (RPV) in the context of traumatic stress and studied its functional neural correlates - this analysis aims to address this gap.

Methods: Fifty human subjects with prior traumatic experiences (24 with posttraumatic stress disorder (PTSD)) completed a ∼3-hr protocol involving personalized traumatic scripts and active/sham (double-blind) transcutaneous cervical vagus nerve stimulation (tcVNS).

View Article and Find Full Text PDF

Objective: Posttraumatic stress disorder (PTSD) is a disabling condition affecting a large segment of the population; however, current treatment options have limitations. New interventions that target the neurobiological alterations underlying symptoms of PTSD could be highly beneficial. Transcutaneous cervical (neck) vagal nerve stimulation (tcVNS) has the potential to represent such an intervention.

View Article and Find Full Text PDF

Transcutaneous electrical stimulation of the vagus nerve is believed to deliver afferent signaling to the brain that, in turn, yields downstream changes in peripheral physiology, including cardiovascular and respiratory parameters. While the effects of transcutaneous cervical vagus nerve stimulation (tcVNS) on these parameters have been studied broadly, little is known regarding the specific effects of tcVNS on exhalation time and the spontaneous respiration cycle. By understanding such effects, tcVNS could be used to counterbalance sympathetic hyperactivity following distress by enhancing vagal tone through parasympathetically favored modulation of inspiration and expiration - specifically, lengthened expiration relative to inspiration.

View Article and Find Full Text PDF

Objective: Exacerbated autonomic responses to acute stress are prevalent in posttraumatic stress disorder (PTSD). The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to acute stress in patients with PTSD. The authors hypothesized tcVNS would reduce the sympathetic response to stress compared to a sham device.

View Article and Find Full Text PDF

Unlabelled: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that plays a key role in the neurobiology of the stress response, and prior studies suggest that its function is dysregulated in post-traumatic stress disorder (PTSD). Transcutaneous cervical vagus nerve stimulation (tcVNS) acts through PACAP and other neurobiological systems to modulate stress responses and/or symptoms of PTSD. In this pilot study, we examined the effects of tcVNS on PACAP in a three day chronic stress laboratory paradigm involving serial traumatic and mental stress exposures in healthy individuals with a history of exposure to psychological trauma (n ​= ​18) and patients with PTSD (n ​= ​12).

View Article and Find Full Text PDF

Background: Transcutaneous cervical vagus nerve stimulation (tcVNS) is a promising alternative to implantable stimulation of the vagus nerve. With demonstrated potential in myriad applications, ranging from systemic inflammation reduction to traumatic stress attenuation, closed-loop tcVNS during periods of risk could improve treatment efficacy and reduce ineffective delivery. However, achieving this requires a deeper understanding of biomarker changes over time.

View Article and Find Full Text PDF

Background: Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation.

Methods: New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans.

View Article and Find Full Text PDF

Background: Traumatic stress can have lasting effects on neurobiology and result in psychiatric conditions such as posttraumatic stress disorder (PTSD). We hypothesize that non-invasive cervical vagal nerve stimulation (nVNS) may alleviate trauma symptoms by reducing stress sympathetic reactivity. This study examined how nVNS alters neural responses to personalized traumatic scripts.

View Article and Find Full Text PDF

Noninvasive vagal nerve stimulation (n-VNS) devices have the potential for widespread applicability in improving the well-being of patients with stress-related psychiatric disorders. n-VNS devices are known to affect physiological signals, and, recently, they have been employed in various protocols involving both acute and longitudinal applications. However, questions regarding response time, "dosage," or optimal treatment paradigms remain open.

View Article and Find Full Text PDF

Transcutaneous cervical vagal nerve stimulation (tcVNS) devices are attractive alternatives to surgical implants, and can be applied for a number of conditions in ambulatory settings, including stress-related neuropsychiatric disorders. Transferring tcVNS technologies to at-home settings brings challenges associated with the assessment of therapy response. The ability to accurately detect whether tcVNS has been effectively delivered in a remote setting such as the home has never been investigated.

View Article and Find Full Text PDF

Da Costa originally described Soldier's Heart in the 19th Century as a syndrome that occurred on the battlefield in soldiers of the American Civil War. Soldier's Heart involved symptoms similar to modern day posttraumatic stress disorder (PTSD) as well as exaggerated cardiovascular reactivity felt to be related to an abnormality of the heart. Interventions were appropriately focused on the cardiovascular system.

View Article and Find Full Text PDF

Human-computer interaction (HCI) technology, and the automatic classification of a person's mental state, are of interest to multiple industries. In this work, the fusion of sensing modalities that monitor the oxygenation of the human prefrontal cortex (PFC) and cardiovascular physiology was evaluated to differentiate between rest, mental arithmetic and N-back memory tasks. A flexible headband to measure near-infrared spectroscopy (NIRS) for quantifying PFC oxygenation, and forehead photoplethysmography (PPG) for assessing peripheral cardiovascular activity was designed.

View Article and Find Full Text PDF