Publications by authors named "Nikunj K Agrawal"

. Chondroitinase ABC (ChABC) has emerged as a promising therapeutic agent for central nervous system regeneration. Despite multiple beneficial outcomes for regeneration, translation of this enzyme is challenged by poor pharmacokinetics, localization, and stability.

View Article and Find Full Text PDF

Natural and synthetic hydrogels have been widely investigated as biomaterial scaffolds to promote tissue repair and regeneration. Nevertheless, the scaffold alone is often insufficient to drive new tissue growth, instead requiring continuous delivery of therapeutics, such as proteins or other biomolecules that work in concert with structural support provided by the scaffold. However, because of the high-water content, hydrogels tend to be permeable and cause rapid release of the encapsulated drug, which could lead to serious complications from local overdose and may result in the significant waste of encapsulated therapeutic(s).

View Article and Find Full Text PDF

Hyaluronic acid (HA)-based biomaterials have been explored for a number of applications in biomedical engineering, particularly as tissue regeneration scaffolds. Crosslinked forms of HA are more robust and provide tunable mechanical properties and degradation rates that are critical in regenerative medicine; however, crosslinking modalities reported in the literature vary and there are few comparisons of different scaffold properties for various crosslinking approaches. In this study, we offer direct comparison of two methacrylation techniques for HA (glycidyl methacrylate HA [GMHA] or methacrylic anhydride HA [MAHA]).

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging.

View Article and Find Full Text PDF

Damaged axons in the adult mammalian central nervous system (CNS), including those of the spinal cord, have extremely limited endogenous capacity to regenerate. This is the result of both the intrinsic and extrinsic inhibitory factors that limit the regeneration of adult neurons. Despite attempts to limit or eliminate the extrinsic inhibitory components, regeneration of adult neurons in the CNS is still limited.

View Article and Find Full Text PDF