Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.
View Article and Find Full Text PDFAn indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.
View Article and Find Full Text PDFIn this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.
View Article and Find Full Text PDFWe present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev.
View Article and Find Full Text PDFAn inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett.
View Article and Find Full Text PDFRecent progress at the National Ignition Facility (NIF), with neutron yields of order 1 × 10, places new constraints on diagnostics used to characterize implosion performance. The Magnetic Recoil neutron Spectrometer (MRS), which is routinely used to measure yield, ion temperature (T), and down-scatter ratio (dsr), has been adapted to allow measurements of dsr up to 5 × 10, and yield and T up to 2 × 10 in the near term with new data processing techniques and conversion foil solutions. This paper presents a solution for extending MRS operation up to a yield of 2 × 10 (60 MJ) by moving the spectrometer outside of the NIF shield wall.
View Article and Find Full Text PDFObtaining a burning plasma is a critical step towards self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory.
View Article and Find Full Text PDFIn inertial confinement fusion, penetrating asymmetric hohlraum preheat radiation (>1.8 keV, which includes high temperature coronal M-band emission from laser spots) can lead to asymmetric ablation front and ablator-fuel interface hydrodynamic instability growth in the imploding capsule. First experiments to infer the preheat asymmetries at the capsule were performed on the National Ignition Facility for high density carbon (HDC) capsules in low density fill (0.
View Article and Find Full Text PDFInertial confinement fusion implosions must achieve high in-flight shell velocity, sufficient energy coupling between the hot spot and imploding shell, and high areal density (ρR=∫ρdr) at stagnation. Asymmetries in ρR degrade the coupling of shell kinetic energy to the hot spot and reduce the confinement of that energy. We present the first evidence that nonuniformity in the ablator shell thickness (∼0.
View Article and Find Full Text PDFInertial confinement fusion seeks to create burning plasma conditions in a spherical capsule implosion, which requires efficiently absorbing the driver energy in the capsule, transferring that energy into kinetic energy of the imploding DT fuel and then into internal energy of the fuel at stagnation. We report new implosions conducted on the National Ignition Facility (NIF) with several improvements on recent work [Phys. Rev.
View Article and Find Full Text PDFExperiments on the National Ignition Facility (NIF) to study hohlraums lined with a 20-mg/cc 400-μm-thick Ta_{2}O_{5} aerogel at full scale (hohlraum diameter = 6.72 mm) are reported. Driven with a 1.
View Article and Find Full Text PDFThe implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.
View Article and Find Full Text PDFWhite dwarfs represent the final state of evolution for most stars. Certain classes of white dwarfs pulsate, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution.
View Article and Find Full Text PDFIn the quest for reaching ignition of deuterium-tritium (DT) fuel capsule implosions, experiments on the National Ignition Facility (NIF) have shown lower final fuel areal densities than simulated. Possible explanations for reduced compression are higher preheat that can increase the ablator-DT ice density jump and induce mix at that interface or reverberating shocks. We are hence developing x-ray Refraction Enhanced Radiography (RER) to infer the inflight density profiles in layered fuel capsule implosions.
View Article and Find Full Text PDFAchieving a symmetric implosion in National Ignition Facility indirect drive targets requires understanding and control of dynamic changes to the laser power transport in the hohlraum. We developed a new experimental platform to simultaneously visualize wall-plasma motion and dynamic laser power transport in the hohlraum and are using it to investigate correlations of these measurements with the imploded capsule symmetry. In a series of experiments where we made one single parameter variation, we show the value of this new platform in developing an understanding of laser transport and implosion symmetry.
View Article and Find Full Text PDFWe report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole.
View Article and Find Full Text PDFA series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.
View Article and Find Full Text PDFMeasurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations.
View Article and Find Full Text PDFThe first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma.
View Article and Find Full Text PDF