The melting transition of Li-DNA fibers immersed in ethanol-water solutions has been studied using calorimetry and neutron diffraction techniques. The data have been analyzed using the Peyrard-Bishop-Dauxois model to determine the strengths of the intra- and inter-base pair potentials. The data and analysis show that the potentials are weaker than those for DNA in water.
View Article and Find Full Text PDFOverstretching of B-DNA is currently understood as force-induced melting. Depending on the geometry of the stretching experiment, the force threshold for the overstretching transition is around 65 or 110 pN. Although the mechanisms behind force-induced melting have been correctly described by Rouzina and Bloomfield [Biophys.
View Article and Find Full Text PDFThe influence of molecular confinement on the melting transition of oriented Na-DNA fibers submerged in poly(ethylene glycol) (PEG) solutions has been studied. The PEG solution exerts an osmotic pressure on the fibers which, in turn, is related to the DNA intermolecular distance. Calorimetry measurements show that the melting temperature increases and the width of the transition decreases with decreasing intermolecular distance.
View Article and Find Full Text PDFBiological organisms exist over a broad temperature range of -15°C to +120°C, where many molecular processes involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be considered the initial steps of the DNA melting pathway.
View Article and Find Full Text PDFThe relationship of base pair openings to DNA flexibility is examined. Published experimental data on the temperature dependence of the persistence length by two different groups are well described in terms of an inhomogeneous Kratky-Porot model with soft and hard joints, corresponding to open and closed base pairs, and sequence-dependent statistical information about the state of each pair provided by a Peyrard-Bishop-Dauxois (PBD) model calculation with no freely adjustable parameters.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2011
Despite numerous attempts, understanding the thermal denaturation of DNA is still a challenge due to the lack of structural data on the transition since standard experimental approaches to DNA melting are made in solution and do not provide spatial information. We report a measurement using neutron scattering from oriented DNA fibers to determine the size of the regions that stay in the double-helix conformation as the melting temperature is approached from below. A Bragg peak from the B form of DNA is observed as a function of temperature and its width and integrated intensity are measured.
View Article and Find Full Text PDFThe melting transition of DNA, whereby the strands of the double-helix structure completely separate at a certain temperature, has been characterized using neutron scattering. A Bragg peak from B-form fiber DNA has been measured as a function of temperature, and its widths and integrated intensities have been interpreted using the Peyrard-Bishop-Dauxois model with only one free parameter. The experiment is unique, as it gives spatial correlation along the molecule through the melting transition where other techniques cannot.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
The melting behavior of long, heterogeneous DNA chains is examined within the framework of the nonlinear lattice dynamics based Peyrard-Bishop-Dauxois (PBD) model. Data for the pBR322 plasmid and the complete T7 phage have been used to obtain model fits and determine parameter dependence on salt content. Melting curves predicted for the complete fd phage and the Y1 and Y2 fragments of the ϕX174 phage without any adjustable parameters are in good agreement with experiment.
View Article and Find Full Text PDFThe equilibrium statistical properties of DNA denaturation bubbles are examined in detail within the framework of the Peyrard-Bishop-Dauxois model. Bubble formation in homogeneous DNA is found to depend crucially on the presence of nonlinear base-stacking interactions. Small bubbles extending over fewer than ten base pairs are associated with much larger free energies of formation per site than larger bubbles.
View Article and Find Full Text PDFThe equilibrium states of the discrete Peyrard-Bishop Hamiltonian with one end fixed are computed exactly from the two-dimensional nonlinear Morse map. These exact nonlinear structures are interpreted as domain walls, interpolating between bound and unbound segments of the chain. Their free energy is calculated to leading order beyond the Gaussian approximation.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2003
We study the static and dynamical properties of DNA in the vicinity of its melting transition, i.e., the separation of the two strands upon heating.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2003
One-dimensional thermodynamic instabilities are phase transitions, not prohibited by Landau's argument because the energy of the domain wall which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the properties of the corresponding singular transfer integral (TI) equation. The present work deals with the generic Peyrard-Bishop model of DNA denaturation.
View Article and Find Full Text PDF