Publications by authors named "Nikos Komodakis"

A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output.

View Article and Find Full Text PDF

Scattering networks are a class of designed Convolutional Neural Networks (CNNs) with fixed weights. We argue they can serve as generic representations for modelling images. In particular, by working in scattering space, we achieve competitive results both for supervised and unsupervised learning tasks, while making progress towards constructing more interpretable CNNs.

View Article and Find Full Text PDF

This paper presents a novel model for video salient object detection called spatiotemporal constrained optimization model (SCOM), which exploits spatial and temporal cues, as well as a local constraint, to achieve a global saliency optimization. For a robust motion estimation of salient objects, we propose a novel approach to modeling the motion cues from optical flow field, the saliency map of the prior video frame and the motion history of change detection, which is able to distinguish the moving salient objects from diverse changing background regions. Furthermore, an effective objectness measure is proposed with intuitive geometrical interpretation to extract some reliable object and background regions, which provided as the basis to define the foreground potential, background potential, and the constraint to support saliency propagation.

View Article and Find Full Text PDF

This paper presents a robust and efficient method for license plate detection with the purpose of accurately localizing vehicle license plates from complex scenes in real time. A simple yet effective image downscaling method is first proposed to substantially accelerate license plate localization without sacrificing detection performance compared with that achieved using the original image. Furthermore, a novel line density filter approach is proposed to extract candidate regions, thereby significantly reducing the area to be analyzed for license plate localization.

View Article and Find Full Text PDF

Computational vision, visual computing and biomedical image analysis have made tremendous progress over the past two decades. This is mostly due the development of efficient learning and inference algorithms which allow better and richer modeling of image and visual understanding tasks. Hyper-graph representations are among the most prominent tools to address such perception through the casting of perception as a graph optimization problem.

View Article and Find Full Text PDF

We present a very general algorithm for structured prediction learning that is able to efficiently handle discrete MRFs/CRFs (including both pairwise and higher-order models) so long as they can admit a decomposition into tractable subproblems. At its core, it relies on a dual decomposition principle that has been recently employed in the task of MRF optimization. By properly combining such an approach with a max-margin learning method, the proposed framework manages to reduce the training of a complex high-order MRF to the parallel training of a series of simple slave MRFs that are much easier to handle.

View Article and Find Full Text PDF

This paper presents a novel unsupervised algorithm to detect salient regions and to segment out foreground objects from background. In contrast to previous unidirectional saliency-based object segmentation methods, in which only the detected saliency map is used to guide the object segmentation, our algorithm mutually exploits detection/segmentation cues from each other. To achieve this goal, an initial saliency map is generated by the proposed segmentation driven low-rank matrix recovery model.

View Article and Find Full Text PDF

This review introduces a novel deformable image registration paradigm that exploits Markov random field formulation and powerful discrete optimization algorithms. We express deformable registration as a minimal cost graph problem, where nodes correspond to the deformation grid, a node's connectivity corresponds to regularization constraints, and labels correspond to 3D deformations. To cope with both iconic and geometric (landmark-based) registration, we introduce two graphical models, one for each subproblem.

View Article and Find Full Text PDF

We propose a framework for intensity-based registration of images by linear transformations, based on a discrete Markov random field (MRF) formulation. Here, the challenge arises from the fact that optimizing the energy associated with this problem requires a high-order MRF model. Currently, methods for optimizing such high-order models are less general, easy to use, and efficient, than methods for the popular second-order models.

View Article and Find Full Text PDF

This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way.

View Article and Find Full Text PDF

Computer-aided diagnosis through biomedical image analysis is increasingly considered in health sciences. This is due to the progress made on the acquisition side, as well as on the processing one. In vivo visualization of human tissues where one can determine both anatomical and functional information is now possible.

View Article and Find Full Text PDF

In this paper we propose a novel approach to define task-driven regularization constraints in deformable image registration using learned deformation priors. Our method consists of representing deformation through a set of control points and an interpolation strategy. Then, using a training set of images and the corresponding deformations we seek for a weakly connected graph on the control points where edges define the prior knowledge on the deformation.

View Article and Find Full Text PDF

In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers.

View Article and Find Full Text PDF

In this paper we propose a novel framework to unite a population to an optimal (unknown) pose through their mutual deformation. The registration criterion comprises three terms, the first imposes compactness on appearance of the registered population at the pixel level, the second tries to minimize the individual distances between all possible pairs of images, while the last is a regularization one imposing smoothness on the deformation fields. The problem is reformulated as a graphical model that consists of hidden (deformation fields) and observed variables (intensities).

View Article and Find Full Text PDF

Whole-body magnetic resonance imaging is an emerging application gaining vast clinical interest during the last years. Although recent technological advances shortened the longish acquisition time, this is still the limiting factor avoiding its wide-spread clinical usage. The acquisition of images with large field-of-view helps to relieve this drawback, but leads to significantly distorted images.

View Article and Find Full Text PDF

In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy.

View Article and Find Full Text PDF

In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image.

View Article and Find Full Text PDF

In this paper, a new exemplar-based framework is presented, which treats image completion, texture synthesis, and image inpainting in a unified manner. In order to be able to avoid the occurrence of visually inconsistent results, we pose all of the above image-editing tasks in the form of a discrete global optimization problem. The objective function of this problem is always well-defined, and corresponds to the energy of a discrete Markov random field (MRF).

View Article and Find Full Text PDF

In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements.

View Article and Find Full Text PDF

A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials.

View Article and Find Full Text PDF