Publications by authors named "Nikos A Laskaris"

Neuromarketing is a continuously evolving field that utilises neuroimaging technologies to explore consumers' behavioural responses to specific marketing-related stimulation, and furthermore introduces novel marketing tools that could complement the traditional ones like questionnaires. In this context, the present paper introduces a multimodal Neuromarketing dataset that encompasses the data from 42 individuals who participated in an advertising brochure-browsing scenario. In more detail, participants were exposed to a series of supermarket brochures (containing various products) and instructed to select the products they intended to buy.

View Article and Find Full Text PDF

The wider adoption of Riemannian geometry in electroencephalography (EEG) processing is hindered by two factors: (a) it involves the manipulation of complex mathematical formulations and, (b) it leads to computationally demanding tasks. The main scope of this work is to simplify particular notions of Riemannian geometry and provide an efficient and comprehensible scheme for neuroscientific explorations.To overcome the aforementioned shortcomings, we exploit the concept of approximate joint diagonalization in order to reconstruct the spatial covariance matrices assuming the existence of (and identifying) a common eigenspace in which the application of Riemannian geometry is significantly simplified.

View Article and Find Full Text PDF

Neuromarketing exploits neuroimaging techniques so as to reinforce the predictive power of conventional marketing tools, like questionnaires and focus groups. Electroencephalography (EEG) is the most commonly encountered neuroimaging technique due to its non-invasiveness, low-cost, and its very recent embedding in wearable devices. The transcription of brainwave patterns to consumer attitude is supported by various signal descriptors, while the quest for profitable novel ways is still an open research question.

View Article and Find Full Text PDF

Unobtrusive mental state monitoring based on neurosphysiological signals has seen thriving developments over the past decade, with a wide area of applications, from rehabilitation to neuroergonomics and neuromarketing. Particularly, electroencephalography (EEG) and electrooculography (EOG) have been popular techniques to obtain cognitive-relevant biosignals. However, current wearable systems may still pose practical inconvenience, motivating further interest to integrate EOG+EEG recording into streamlined frontal-only sensor montages with sufficient signal fidelity.

View Article and Find Full Text PDF

Fueled by early success stories, the neuromarketing domain advanced rapidly during the last 10 years. As exciting new techniques were being adapted from medical research to the commercial domain, many neuroscientists and marketing practitioners have taken the chance to exploit them so as to uncover the answers of the most important marketing questions. Among the available neuroimaging technologies, electroencephalography (EEG) stands out as the less invasive and most affordable method.

View Article and Find Full Text PDF

Objective: We introduce a novel, phase-based, functional connectivity descriptor that encapsulates not only the synchronization strength between distinct brain regions, but also the time-lag between the involved neural oscillations. The new estimator employs complex-valued measurements and results in a brain network sketch that lives on the smooth manifold of Hermitian Positive Definite (HPD) matrices.

Approach: Leveraging the HPD property of the proposed descriptor, we adapt a recently introduced dimensionality reduction methodology that is based on Riemannian Geometry and discriminatively detects the recording sites which best reflect the differences in network organization between contrasting recording conditions in order to overcome the problem of high-dimensionality, usually encountered in the connectivity patterns derived from multisite encephalographic recordings.

View Article and Find Full Text PDF

Objective: Spatial covariance matrices are extensively employed as brain activity descriptors in brain computer interface (BCI) research that, typically, involve the whole array of sensors. Here, we introduce a methodological framework for delineating the subset of sensors, the covariance structure of which offers a reduced, but more powerful, representation of brain's coordination patterns that ultimately leads to reliable mind reading.

Methods: Adopting a Riemannian geometry approach, we turn the problem of sensor selection as a maximization of a functional that is computed over the manifold of symmetric positive definite (SPD) matrices and encapsulates class separability in a way that facilitates the search among subsets of different size.

View Article and Find Full Text PDF

Gaze-based keyboards offer a flexible way for human-computer interaction in both disabled and able-bodied people. Besides their convenience, they still lead to error-prone human-computer interaction. Eye tracking devices may misinterpret user's gaze resulting in typesetting errors, especially when operated in fast mode.

View Article and Find Full Text PDF

We recorded the magnetoencephalographic (MEG) signal from three subjects before, during and after eye movements cued to a tone, self-paced, awake and during rapid eye movement (REM) sleep. During sleep we recorded the MEG signal throughout the night together with electroencephalographic (EEG) and electromyographic (EMG) channels to construct a hypnogram. While awake, just prior to and during eye movements, the expected well time-locked physiological activations were imaged in pontine regions, with early 3 s priming.

View Article and Find Full Text PDF