The redox-sensitive signaling system Keap1/Nrf2/ARE is a premier protective mechanism against oxidative stress that plays a key role in the pathogenesis and development of various diseases, including tuberculous granulomatous inflammation. We have previously reported that novel water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate) induces Keap1/Nrf2/ARE and attenuates inflammation. The aim of this study is the examination of the effect of TS-13 on tuberculous granulomatous inflammation.
View Article and Find Full Text PDFObjective: This study was conducted to evaluate the effect of the synthetic water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate), an inducer of the redox-dependent Keap1/Nrf2/ARE signaling system, in experimental models of acute and chronic inflammation.
Methods: Acute local inflammation was induced by intraplantar carrageenan injection into rat hind paws, and acute systemic inflammation was modeled by intravenous zymosan injection (in rats) or LPS-induced endotoxic shock (in mice). Chronic inflammation was investigated in rat models of air pouch and collagen-induced arthritis.
Background: Little is known about the role of free-radical and oxidative stress signaling in granuloma maturation and resolution. We aimed to study the activity of free-radical oxidation processes in the dynamics of BCG-induced generalized granulomatosis in mice.
Methods: Chronic granulomatous inflammation was induced in male BALB/c mice by intravenously injecting the BCG vaccine, and the production of oxidative stress (activity of free-radical oxidation processes) and histological changes in the lungs, liver, and peritoneal exudate were measured 3, 30, 60, and 90 days after infection.