Publications by authors named "Nikolay Zaitsev"

In the last decade, there has been continuous competition between two methods for detecting the concentration of dissolved oxygen: amerometric (Clark electrode) and optical (quenching of the phosphorescence of the porphyrin metal complex). Each of them has obvious advantages and disadvantages. This competition is especially acute in the development of biosensors, however, an unbiased comparison is extremely difficult to achieve, since only a single detection method is used in each particular study.

View Article and Find Full Text PDF

Composite materials are the most variative type of materials employed in almost every task imaginable. In the present study, a synthesis of a novel perfluoroalkyltriethoxysilane is reported to be used in creating composites with polyhexafluoropropylene-one of the most indifferent and adhesion-lacking polymers existing. The mechanism of adhesion of hexafluoropropylene is proved to be due to chemical structural coherence of perfluoroalkyltriethoxysilane to a link of polyhexafluoropropylene chain.

View Article and Find Full Text PDF

The simple and facilitated transfer of tripeptide glutathione across the water/2-nitrophenyl octhyl ether interface was studied via cyclic voltammetry at interface between two immiscible electrolyte solutions (ITIES). The micro-perforated membrane prepared with a laser with a femtosecond pulse was used for mechanical stabilization of the interface. The method of cyclic voltammetry was used to study the passive and facilitated interfacial transfer of glutathione and its complex with the crown ether dibenzo-18-crown-6 (DB18C6).

View Article and Find Full Text PDF

The development of different methods for tuning surface properties is currently of great interest. The presented work is devoted to the use of modified nanodiamonds to control the wetting and biological fouling of polymers using optical sensors as an example. We have shown that, depending on the type of modification and the amount of nanodiamonds, the surface of the same fluorinated polymer can have both bactericidal properties and, on the contrary, good adhesion to the biomaterial.

View Article and Find Full Text PDF