Publications by authors named "Nikolay V Vitanov"

We introduce a method to enhance the precision and accuracy of Quantum Process Tomography (QPT) by mitigating the errors caused by state preparation and measurement (SPAM), readout and shot noise. Instead of performing QPT solely on a single gate, we propose performing QPT on a sequence of multiple applications of the same gate. The method involves the measurement of the Pauli transfer matrix (PTM) by standard QPT of the multipass process, and then deduce the single-process PTM by two alternative approaches: an iterative approach which in theory delivers the exact result for small errors, and a linearized approach based on solving the Sylvester equation.

View Article and Find Full Text PDF

We theoretically propose a type of tunable polarization retarder, which is composed of sequences of half-wave and quarter-wave polarization retarders, allowing operation at broad spectral bandwidth. The constituent retarders are composed of stacked standard half-wave retarders and quarter-wave retarders rotated at designated angles relative to their fast polarization axes. The proposed composite retarder (CR) can be tuned to an arbitrary value of the retardance by varying the middle retarder alone while maintaining its broadband spectral bandwidth intact.

View Article and Find Full Text PDF

Power broadening-the broadening of the spectral line profile of a two-state quantum transition as the amplitude of the driving field increases-is a well-known and thoroughly examined phenomenon in spectroscopy. It typically occurs in continuous-wave driving when the intensity of the radiation field increases beyond the saturation intensity of the transition. In pulsed-field excitation, linear power broadening occurs for a pulse of rectangular temporal shape.

View Article and Find Full Text PDF

We introduce a quantum control technique using polychromatic pulse trains, consisting of pulses with different carrier frequencies, i.e., different detunings with respect to the qubit transition frequency.

View Article and Find Full Text PDF

In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics, which are trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an ancillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arising from the procedure.

View Article and Find Full Text PDF

We propose a method for the realization of the two-qubit quantum Fourier transform (QFT) using a Hamiltonian which possesses the circulant symmetry. Importantly, the eigenvectors of the circulant matrices are the Fourier modes and do not depend on the magnitude of the Hamiltonian elements as long as the circulant symmetry is preserved. The QFT implementation relies on the adiabatic transition from each of the spin product states to the respective quantum Fourier superposition states.

View Article and Find Full Text PDF

A highly efficient method for optical or microwave detection and separation of left- and right-handed chiral molecules is proposed. The method utilizes a closed-loop three-state system in which the population dynamics depends on the phases of the three couplings. Because of the different signs of the coupling between two of the states for the opposite chiralities the population dynamics is chirality dependent.

View Article and Find Full Text PDF

The quadrupole interaction between the Rydberg electronic states of a Rydberg ion and the radio frequency electric field of the ion trap is analyzed. Such a coupling is negligible for the lowest energy levels of a trapped ion but it is important for a trapped Rydberg ion due to its large electric quadrupole moment. This coupling cannot be neglected by the standard rotating-wave approximation because it is comparable to the frequency of the trapping electric field.

View Article and Find Full Text PDF

We introduce universally robust sequences for dynamical decoupling, which simultaneously compensate pulse imperfections and the detrimental effect of a dephasing environment to an arbitrary order, work with any pulse shape, and improve performance for any initial condition. Moreover, the number of pulses in a sequence grows only linearly with the order of error compensation. Our sequences outperform the state-of-the-art robust sequences for dynamical decoupling.

View Article and Find Full Text PDF

We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states.

View Article and Find Full Text PDF

The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success.

View Article and Find Full Text PDF

We introduce universal broadband composite pulse sequences for robust high-fidelity population inversion in two-state quantum systems, which compensate deviations in any parameter of the driving field (e.g., pulse amplitude, pulse duration, detuning from resonance, Stark shifts, unwanted frequency chirp, etc.

View Article and Find Full Text PDF

We propose a method to suppress unwanted transition channels and achieve perfect population transfer in multistate quantum systems by using composite pulse sequences. Unwanted transition paths may be present due to imperfect light polarization, misalignment of the quantization axis, spatial inhomogeneity of the trapping fields, off-resonant couplings, etc., or they may be merely unavoidable, e.

View Article and Find Full Text PDF

Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

View Article and Find Full Text PDF

We demonstrate theoretically that it is possible to exercise coherent control of the temperature in nanostructures by laser fields. In particular we show that by use of nanosecond laser pulses it is possible to induce a temperature distribution on a collection of nanoparticles which can last for up to thousands of nanoseconds before assuming the temperature of the environment. Although the form of the temperature distribution depends on the spatiotemporal control of the optical near field induced by the laser field, it is far from being proportional to the local radiation field at a particular point due to the cooling mechanisms which take place among the nanoparticles.

View Article and Find Full Text PDF

We propose and experimentally demonstrate novel types of composite sequences of half-wave and quarter-wave polarization retarders, permitting operation at either ultrabroad spectral bandwidth or narrow bandwidth. The retarders are composed of stacked standard half-wave retarders and quarter-wave retarders of equal thickness. To our knowledge, these home-built devices outperform all commercially available compound retarders, made of several birefringent materials.

View Article and Find Full Text PDF

Driving on an analogy with the technique of composite pulses in quantum physics, we propose highly efficient broadband polarization converters composed of sequences of ordinary retarders rotated at specific angles with respect to their fast-polarization axes.

View Article and Find Full Text PDF

We present a method for optimization of the technique of adiabatic passage between two quantum states by composite sequences of frequency-chirped pulses with specific relative phases: composite adiabatic passage (CAP). By choosing the composite phases appropriately the nonadiabatic losses can be canceled to any desired order with sufficiently long sequences, regardless of the nonadiabatic coupling. The values of the composite phases are universal for they do not depend on the pulse shapes and the chirp.

View Article and Find Full Text PDF

A vital requirement for a quantum computer is the ability to locally address, with high fidelity, any of its qubits without affecting their neighbors. We propose an addressing method using composite sequences of laser pulses that dramatically reduces the addressing error in a lattice of closely spaced atoms or ions and at the same time significantly enhances the robustness of qubit manipulations. To this end, we design novel (to our knowledge) high-fidelity composite pulses for the most important single-qubit operations.

View Article and Find Full Text PDF

We show that the quantum interference between two spontaneous emission channels can be greatly enhanced when a three-level V-type atom is placed near plasmonic nanostructures such as metallic slabs, nanospheres, or periodic arrays of metal-coated spheres. The spontaneous emission rate is calculated by a rigorous first-principles electromagnetic Green's tensor technique. The enhancement of quantum interference is attributed to the strong dependence of the spontaneous emission rate on the orientation of an atomic dipole relative to the surface of the nanostructure at the excitation frequencies of surface plasmons.

View Article and Find Full Text PDF

We examine theoretically the Casimir effect between a metallic plate and several types of magnetic metamaterials in pursuit of Casimir repulsion, by employing a rigorous multiple-scattering theory for the Casimir effect. We first examine metamaterials in the form of two-dimensional lattices of inherently nonmagnetic spheres such as spheres made from materials possessing phonon-polariton and exciton-polariton resonances. Although such systems are magnetically active in infrared and optical regimes, the force between finite slabs of these materials and metallic slabs is plainly attractive since the effective electric permittivity is larger than the magnetic permeability for the studied spectrum.

View Article and Find Full Text PDF

We propose a novel setup for optically trapping neutral atoms based upon the focusing properties of metamaterials. The optical trap is created at the focal point of an inverted-opal crystal when the latter is illuminated by a localized light source. The trap is located away from the surface of the inverted-opal lens, rendering the Casimir-Polder attraction exerted by the lens on the atom negligible.

View Article and Find Full Text PDF

We present exact calculations of the spatial correlation of the blackbody radiation in the presence of spheres whose dimensions are smaller or comparable to the radiation wavelength. By going beyond the standard scalar coherence theory, we show that the spatial correlation function of a spherical thermal source is not universal but depends on the material properties of the source and exhibits near-field-induced features. Near-field effects are also manifested in the case of a linear chain of dielectric spheres where the correlation function probes the inhomogeneity of the chain.

View Article and Find Full Text PDF

We present a first-principles method for the determination of the van der Waals interactions for a collection of finite-sized macroscopic bodies. The method is based on fluctuational electrodynamics and a rigorous multiple-scattering method for the electromagnetic field. As such, the method takes fully into account retardation, many-body, multipolar, and near-fields effects.

View Article and Find Full Text PDF

We present a detailed theory of a technique for the adiabatic control of the population flow through a preselected decaying excited level in a three-level ladder quantum system, as was experimentally demonstrated recently by Garcia-Fernandez et al. [Phys. Rev.

View Article and Find Full Text PDF