Background: Development of biomarkers for autism spectrum disorder (ASD) has still remained a challenge to date. Recently, alterations of the expression of microRNAs (miRNAs) in peripheral blood, serum and post-mortem brain tissue have been linked to ASD. miRNAs are known to be secreted by various cell types and can mediate transmission of information into recipient cells and to modulate their physiological functions.
View Article and Find Full Text PDFNeuropsychiatric diseases, such as schizophrenia, bipolar disorder (BD), major depressive disorder (MDD) and autism spectrum disorder (ASD), are a huge burden on society, impairing the health of those affected, as well as their ability to learn and work. Biomarkers that reflect the dysregulations linked to neuropsychiatric diseases may potentially assist the diagnosis of these disorders. Most of these biomarkers are found in the brain tissue, which is not easily accessible.
View Article and Find Full Text PDFAutism spectrum disorder is an entity that reflects a scientific consensus that several previously separated disorders are actually a single spectrum disorder with different levels of symptom severity in two core domains - deficits in social communication and interaction, and restricted repetitive behaviors. Autism spectrum disorder is diagnosed in all racial, ethnic and socioeconomic groups and because of its increased prevalence, reported worldwide through the last years, made it one of the most discussed child psychiatric disorders. In term of aetiology as several other complex diseases, Autism spectrum disorder is considered to have a strong genetic component.
View Article and Find Full Text PDFAim: To study the development of children with selectively treated cytomegalovirus infection.
Patients And Methods: We studied prospectively a risk group of 12 children with cytomegalovirus infection. These children were diagnosed by serological screening in the first three months after birth and are defined as congenital and perinatal infections.
Epidemiological evidence suggests that etiology of schizophrenia may involve both the influence of genetic factors specific for the individual and the impact of the environment. It is quite likely that a crucial role in the disease development is played by molecular mechanisms mediating the interaction between genes and environment. Modern research have shown that epigenetic mechanisms or chemical modifications of deoxyribonucleic acids (DNA) and histone proteins remain unstable throughout life and can be changed by environmental factors.
View Article and Find Full Text PDF