Publications by authors named "Nikolay S Shelud'ko"

In this paper, we tried to create a contractile model from proteins of the catch muscle of the Gray mussel, similar to the well-described suspension contractile model of vertebrate skeletal muscles. This model makes it possible to characterize the processes in the reconstructed contractile apparatus with the help of monitoring the two characteristics of muscle suspensions - the optical density and the particle size. Contractile model of the catch muscle we constructed was the simplest model consisting of two proteins, actin and myosin.

View Article and Find Full Text PDF

In the work, we performed densitometry of thick filaments of the Gray's mussel catch muscle; densitometry included determination of electrophoretic dye binding constants of proteins. The results of densitometry showed that the content of twitchin in thick filaments is significantly (10 times) lower than the content of myosin. We performed an in vitro simulation of the contractile apparatus of the catch muscle and showed that with such content, links formed by twitchin cannot stop "relaxation".

View Article and Find Full Text PDF

Calponin-like protein (CaP-40), a third major protein after actin and tropomyosin, has recently been identified by us in the Ca-regulated thin filaments of mussel Crenomytilus grayanus. It contains calponin homology domain, five calponin family repeats and possesses similar biochemical properties as vertebrate smooth muscle calponin. In this paper, we report a full-length cDNA sequence of CaP-40, study its expression pattern on mRNA and protein levels, evaluate CaP-40 post-translational modifications and perform protein-protein interaction analysis.

View Article and Find Full Text PDF

We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Сrenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate.

View Article and Find Full Text PDF

Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida).

View Article and Find Full Text PDF

In this study, we investigated hybrid and non-hybrid actomyosin models including key contractile proteins: actin, myosin, and tropomyosin. These proteins were isolated from the rabbit skeletal muscle and the catch muscle of the mussel Crenomytilus grayanus. Our results confirmed literature data on an unusual ability of bivalve's tropomyosin to inhibit Mg-ATPase activity of skeletal muscle actomyosin.

View Article and Find Full Text PDF

Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK) and, perhaps, molluscan twitchin, which contains a MLCK-like domain.

View Article and Find Full Text PDF

We isolated Ca(2+)-regulated thin filaments from the smooth muscle of the mussel Crenomytilus grayanus and studied the protein composition of different preparations from this muscle: whole muscle, heat-stable extract, fractions from heat-stable extract, thin filaments and intermediate stages of thin filaments purification. Among the protein components of the above-listed preparations, we did not find caldesmon (CaD), although two isoforms of a calponin-like (CaP-like) protein, which along with CaD is characteristic of vertebrate smooth muscle, were present in thin filaments. Thus, CaD is not Ca(2+)-regulator of thin filaments of this muscle.

View Article and Find Full Text PDF

The effect of twitchin, a thick filament protein of molluscan muscles, on the actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using the polarized fluorescence of 1.5-IAEDANS bound to myosin heads, FITC-phalloidin attached to actin and acrylodan bound to twitchin in the glycerol-skinned skeletal muscle fibres of mammalian. The phosphorylation-dependent multi-step changes in mobility and spatial arrangement of myosin SH1 helix, actin subunit and twitchin during the ATPase cycle have been revealed.

View Article and Find Full Text PDF

Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain.

View Article and Find Full Text PDF

A new evidence on the regulatory function of twitchin, a titin-like protein of molluscan muscles, at muscle contraction has been obtained at studying the movements of IAF-labeled mussel tropomyosin in skeletal ghost fibers during the ATP hydrolysis cycle simulated using nucleotides and non-hydrolysable ATP analogs. For the first time, myosin-induced multistep changes in mobility and in the position of mussel tropomyosin strands on the surface of the thin filament during the ATP hydrolysis cycle have been demonstrated directly. Unphosphorylated twitchin shifts the tropomyosin towards the position typical for muscle relaxation, decreases the tropomyosin affinity to actin and inhibits its movements during the ATPase cycle.

View Article and Find Full Text PDF

We have shown previously that myorod, a molluscan thick filament protein of unknown function, is phosphorylated by vertebrate smooth myosin light chain kinase (MLCK) in N-terminal unique region. The aim of the present study was to clarify whether such phosphorylation may occur in molluscan muscles. We detected three kinases endogenous to molluscan catch muscle, namely, to the complex of surface thick filament proteins that consists of twitchin, myosin, and myorod.

View Article and Find Full Text PDF

The effect of twitchin, a thick filament protein of molluscan muscles, on actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using fluorescent probes specifically bound to Cys707 of myosin subfragment-1 and Cys374 of actin incorporated into ghost muscle fibers. The multi-step changes in mobility and spatial arrangement of myosin SH1 helix and actin subdomain-1 during the ATPase cycle have been revealed. For the first time, the inhibition of movement of myosin SH1 helix and actin subdomain-1 during the ATPase cycle and the decrease in the myosin head and actin affinity in the presence of unphosphorylated twitchin have been demonstrated.

View Article and Find Full Text PDF

Molluscan catch muscles can maintain tension with low or even no energy utilization, and therefore, they represent ideal models for studying energy-saving holding states. For many decades it was assumed that catch is due to a simple slowing of the force-generating myosin head cross-bridge cycles. However, recently evidences increased suggesting that catch is rather caused by passive structures linking the myofilaments in a phosphorylation-dependent manner.

View Article and Find Full Text PDF

"Twitchin-actin linkage hypothesis" for the catch mechanism in molluscan smooth muscles postulates in vivo existence of twitchin links between thin and thick filaments that arise in a phosphorylation-dependent manner [N.S. Shelud'ko, G.

View Article and Find Full Text PDF

Myorod, also known as catchin, a newly discovered component of molluscan smooth muscle thick filaments, is an alternative product of the myosin heavy chain gene. It contains a C-terminal rod part that is identical to that part of myosin and a unique N-terminal domain that is very small relative to the myosin head domain. The role of myorod in contraction or relaxation of this muscle type is unknown.

View Article and Find Full Text PDF