Publications by authors named "Nikolay Kukushkin"

Transforming growth factor β (TGFβ) is required for long-term memory (LTM) for sensitization in . When LTM is induced using a two-trial training protocol, TGFβ inhibition only blocks LTM when administrated at the second, not the first trial. Here, we show that TGFβ acts as a "repetition detector" during the induction of two-trial LTM.

View Article and Find Full Text PDF

Two-trial learning in reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT).

View Article and Find Full Text PDF

The inert gas xenon (Xe) is increasingly used in medicine as a universal anesthetic, a regulator of cellular metabolism, and a broad-spectrum organoprotector. Commonly utilized Xe inhalation requires expensive equipment that is not universally available. Here we describe the production process and physical characteristics of a solid, highly stable xenon carrier based on α-cyclodextrin (α-CD), developed for oral administration.

View Article and Find Full Text PDF

Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR.

View Article and Find Full Text PDF

Memory is typically defined through animal behavior, but this point of view may limit our understanding of many related processes in diverse biological systems. The concept of memory can be broadened meaningfully by considering it from the perspective of time and homeostasis. On the one hand, this theoretical angle can help explain and predict the behavior of various non-neural systems such as insulin-secreting cells, plants, or signaling cascades.

View Article and Find Full Text PDF

Background: Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m.

View Article and Find Full Text PDF

Memory is an adaptation to particular temporal properties of past events, such as the frequency of occurrence of a stimulus or the coincidence of multiple stimuli. In neurons, this adaptation can be understood in terms of a hierarchical system of molecular and cellular time windows, which collectively retain information from the past. We propose that this system makes various timescales of past experience simultaneously available for future adjustment of behavior.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) degrades misfolded proteins including those implicated in neurodegenerative diseases. We investigated the effects of tau accumulation on proteasome function in a mouse model of tauopathy and in a cross to a UPS reporter mouse (line Ub-G76V-GFP). Accumulation of insoluble tau was associated with a decrease in the peptidase activity of brain 26S proteasomes, higher levels of ubiquitinated proteins and undegraded Ub-G76V-GFP.

View Article and Find Full Text PDF

Although rates of protein degradation by the ubiquitin-proteasome pathway (UPS) are determined by their rates of ubiquitination, we show here that the proteasome's capacity to degrade ubiquitinated proteins is also tightly regulated. We studied the effects of cAMP-dependent protein kinase (PKA) on proteolysis by the UPS in several mammalian cell lines. Various agents that raise intracellular cAMP and activate PKA (activators of adenylate cyclase or inhibitors of phosphodiesterase 4) promoted degradation of short-lived (but not long-lived) cell proteins generally, model UPS substrates having different degrons, and aggregation-prone proteins associated with major neurodegenerative diseases, including mutant FUS (Fused in sarcoma), SOD1 (superoxide dismutase 1), TDP43 (TAR DNA-binding protein 43), and tau.

View Article and Find Full Text PDF

Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin-proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation.

View Article and Find Full Text PDF

Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13.

View Article and Find Full Text PDF
Article Synopsis
  • GNE is a key enzyme involved in producing sialic acid, which is important for glycosylation, and mutations in GNE cause GNE myopathy, a rare neuromuscular disorder.
  • Research using various models, including patient cells and mice, showed that both neutral and sialylated glycosphingolipids (GSLs) were elevated in GNE myopathy.
  • Supplementing with N-acetylmannosamine (ManNAc) reduced GSL levels in affected cells, suggesting a connection between sialic acid synthesis disruption and increased GSLs, indicating potential for GSLs as biomarkers in sialic acid metabolism disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Endoplasmic reticulum-associated degradation (ERAD) is a crucial process that removes misfolded proteins from the endoplasmic reticulum for breakdown by the ubiquitin/proteasome system.
  • Researchers studied free oligosaccharides (FOS) from glycoproteins undergoing ERAD to gain insights into the overall mechanisms involved, rather than just focusing on specific model proteins.
  • Their findings suggest a new pathway for degrading glycoproteins that have not passed quality control, characterized by unique FOS types produced in the ER, which differ from commonly recognized FOS produced through traditional misfolding routes.
View Article and Find Full Text PDF

Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity.

View Article and Find Full Text PDF
Article Synopsis
  • * It explains that while glucosidases I and II are primarily responsible for this process, endo-α-mannosidase can act as a backup in certain situations, especially when glucosidases are inhibited.
  • * The research found that in bovine cells, the endomannosidase has a limited substrate range and is genetically regulated, suggesting it is adapted to function effectively even when other enzymes have reduced activity.
View Article and Find Full Text PDF

During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins.

View Article and Find Full Text PDF

Multiple isoforms of mammalian alpha-mannosidases are active in the pathways of N-linked glycoprotein synthesis and catabolism. They differ in specificity, function and location within the cell and can be selectively inhibited by imino sugar monosaccharide mimics. Previously, a series of structurally related novel 7-membered iminocyclitols were synthesised and found to be inhibitors of alpha-mannosidase using in vitro assays.

View Article and Find Full Text PDF

The presence of cis-configured exchangeable ligands has long been considered a prerequisite for antitumor activity of platinum complexes, but over the past few years, several examples violating this structure-activity relationship have been recognized. We report here on studies with the geometric isomers of [PtCl2(acetoxime)2], cis-[dichlorobis(acetoxime)platinum(II)] [1 (cis)] and trans-[dichlorobis(acetoxime)platinum(II)] [2 (trans)], as well as those of [PtCl2(hydroxylamine)2], cis-[dichlorobis(hydroxylamine)platinum(II)] [3 (cis)] and trans-[dichlorobis(hydroxylamine)platinum(II)] [4 (trans)]. We found that 2 (trans)is 16 times more cytotoxic than 1 (cis) and as cytotoxic as cisplatin in cisplatin-sensitive ovarian carcinoma cells (CH1).

View Article and Find Full Text PDF