Publications by authors named "Nikolay Kochev"

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles.

View Article and Find Full Text PDF

Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of safe-and-sustainable-by-design (SSbD).

View Article and Find Full Text PDF

SLN (SYBYL Line Notation) is the most comprehensive and rich linear notation for representation of chemical objects of various kinds facilitating a wide range of cheminformatics algorithms. Though, it is not the most popular linear notation nowadays, SLN has capabilities for supporting the most challenging tasks of the present day cheminformatics research. We present Ambit-SLN, a new software library for cheminformatics processing of chemical objects via linear notation SLN.

View Article and Find Full Text PDF

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data.

View Article and Find Full Text PDF

The field of nanoinformatics is rapidly developing and provides data driven solutions in the area of nanomaterials (NM) safety. Safe by Design approaches are encouraged and promoted through regulatory initiatives and multiple scientific projects. Experimental data is at the core of nanoinformatics processing workflows for risk assessment.

View Article and Find Full Text PDF

Computational prediction of xenobiotic metabolism can provide valuable information to guide the development of drugs, cosmetics, agrochemicals, and other chemical entities. We have previously developed FAME 2, an effective tool for predicting sites of metabolism (SoMs). In this work, we focus on the prediction of the chemical structures of metabolites, in particular metabolites of xenobiotics.

View Article and Find Full Text PDF

Ambit-GCM is a new software tool for group contribution modelling (GCM), developed as a part of the chemoinformatics platform AMBIT. It is an open-source tool distributed under LGPL license, written in Java and based on the Chemistry Development Kit. Ambit-GCM provides an environment for creating models of molecular properties using additive schemes of zero, first or second orders.

View Article and Find Full Text PDF

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals.

View Article and Find Full Text PDF

Ambit-SMIRKS is an open source software, enabling structure transformation via the SMIRKS language and implemented as an extension of Ambit-SMARTS. As part of the Ambit project it builds on top of The Chemistry Development Kit (The CDK). Ambit-SMIRKS provides the following functionalities: parsing of SMIRKS linear notations into internal reaction (transformation) representations based on The CDK objects, application of the stored reactions against target (reactant) molecules for actual transformation of the target chemical objects, reaction searching, stereo information handling, product post-processing, etc.

View Article and Find Full Text PDF

Chemogenomics data generally refers to the activity data of chemical compounds on an array of protein targets and represents an important source of information for building target prediction models. The increasing volume of chemogenomics data offers exciting opportunities to build models based on Big Data. Preparing a high quality data set is a vital step in realizing this goal and this work aims to compile such a comprehensive chemogenomics dataset.

View Article and Find Full Text PDF

Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems.

View Article and Find Full Text PDF

We present a new open source tool for automatic generation of all tautomeric forms of a given organic compound. Ambit-Tautomer is a part of the open source software package Ambit2. It implements three tautomer generation algorithms: combinatorial method, improved combinatorial method and incremental depth-first search algorithm.

View Article and Find Full Text PDF

QSAR regression models of the toxicity of triazoles and benzotriazoles ([B]TAZs) to an alga (Pseudokirchneriella subcapitata), Daphnia magna and a fish (Onchorhynchus mykiss), were developed by five partners in the FP7-EU Project, CADASTER. The models were developed by different methods - Ordinary Least Squares (OLS), Partial Least Squares (PLS), Bayesian regularised regression and Associative Neural Network (ASNN) - by using various molecular descriptors (DRAGON, PaDEL-Descriptor and QSPR-THESAURUS web). In addition, different procedures were used for variable selection, validation and applicability domain inspection.

View Article and Find Full Text PDF

We present new developments in the AMBIT open source software package for efficient searching of chemical structures and structural fragments. AMBIT-SMARTS is a Java based software built on top of The Chemistry Development Kit. The AMBIT-SMARTS parser implements the entire SMARTS language specification with several syntax extensions that enable support for custom modifications introduced by third party software packages such as OpenEye, MOE and OpenBabel.

View Article and Find Full Text PDF

Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets.

View Article and Find Full Text PDF

Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744-2750, 1999).

View Article and Find Full Text PDF