Publications by authors named "Nikolay Karpuk"

Acute lung injury (ALI) initiates an inflammatory cascade that impairs gas exchange, induces hypoxemia, and causes an increase in respiratory rate (f). This stimulates the carotid body (CB) chemoreflex, a fundamental protective reflex that maintains oxygen homeostasis. Our previous study indicated that the chemoreflex is sensitized during the recovery from ALI.

View Article and Find Full Text PDF

Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI.

View Article and Find Full Text PDF

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3 mouse model of JNCL, whereas neuron death occurs much later in the disease process.

View Article and Find Full Text PDF

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by autosomal recessive mutations in CLN3. JNCL is typified by progressive neurodegeneration that has been suggested to occur from excessive excitatory and impaired inhibitory synaptic input; however, no studies to date have directly evaluated neuronal function. To examine changes in neuronal activity with advancing disease, electrophysiological recordings were performed in the CA1 hippocampus (HPC) and visual cortex (VC) of acute brain slices from Cln3 mice at 1, 4, 8, and 12months of age.

View Article and Find Full Text PDF

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3 that leads to vision loss, progressive cognitive and motor decline, and premature death. Morphological evidence of astrocyte activation occurs early in the disease process and coincides with regions where neuronal loss eventually ensues. However, the consequences of CLN3 mutation on astrocyte function remain relatively ill-defined.

View Article and Find Full Text PDF

Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice.

View Article and Find Full Text PDF

Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1) response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood-brain barrier permeability.

View Article and Find Full Text PDF

Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum.

View Article and Find Full Text PDF

Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs.

View Article and Find Full Text PDF