Publications by authors named "Nikolay Ilyinsky"

Despite extensive research, the features associated with the aging phenotype are not all-inclusive and need to be updated on a regular basis to incorporate new findings. We propose to include the dysfunction of membrane-less organelle (MLO) as a new aging hallmark. Special scaffold proteins with a high degree of intrinsic disorder drive the formation of MLOs via the liquid-liquid phase separation (LLPS) process.

View Article and Find Full Text PDF

The primary role of telomerase is the lengthening of telomeres. Nonetheless, emerging evidence highlights additional functions of telomerase outside of the nucleus. Specifically, its catalytic subunit, TERT (Telomerase Reverse Transcriptase), is detected in the cytosol and mitochondria.

View Article and Find Full Text PDF

The analysis of cryo-electron tomography images of human and rat mitochondria revealed that the mitochondrial matrix is at least as crowded as the cytosol. To mitigate the crowding effects, metabolite transport in the mitochondria primarily occurs through the intermembrane space, which is significantly less crowded. The scientific literature largely ignores how enzyme systems and metabolite transport are organized in the crowded environment of the mitochondrial matrix.

View Article and Find Full Text PDF

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology.

View Article and Find Full Text PDF

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction.

View Article and Find Full Text PDF

At the molecular level, aging is often accompanied by dysfunction of stress-induced membrane-less organelles (MLOs) and changes in their physical state (or material properties). In this work, we analyzed the proteins included in the proteome of stress granules (SGs) and P-bodies for their tendency to transform the physical state of these MLOs. Particular attention was paid to the proteins whose gene expression changes during replicative aging.

View Article and Find Full Text PDF
Article Synopsis
  • Actin exists in three forms: monomeric globular (G-actin), polymeric fibrillar (F-actin), and an inactivated form called I-actin, which forms without cellular folding machinery.
  • The transformation from G-actin to I-actin can occur through various methods, including removal of divalent ions, mild denaturants, or heat, and I-actin can aggregate into oligomers of about 14-16 G-actin monomers.
  • This study uses small-angle X-ray scattering to investigate the oligomerization process of I-actin, distinguishing it from F-actin and revealing a unique pathway of oligomer formation.
View Article and Find Full Text PDF

The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging.

View Article and Find Full Text PDF

Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH.

View Article and Find Full Text PDF

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FF) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential.

View Article and Find Full Text PDF

This work is devoted to the phenomenon of liquid-liquid phase separation (LLPS), which has come to be recognized as fundamental organizing principle of living cells. We distinguish separation processes with different dimensions. Well-known 3D-condensation occurs in aqueous solution and leads to membraneless organelle (MLOs) formation.

View Article and Find Full Text PDF

Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies.

View Article and Find Full Text PDF

Many potent DNA aptamers are known to contain a G-quadruplex (G4) core. Structures and applications of the majority of such aptamers have been reviewed previously. The present review focuses on the design and optimization of G4 aptamers.

View Article and Find Full Text PDF

Novel generations of antitumor anthraquinones are expected to be advantageous over the conventional chemotherapeutic agents. Previous structure-activity relationship studies demonstrated an importance of the positively charged side chains conjugated to anthra[2,3-b]thiophene-5,10-dione scaffolds. Exploring a role of individual side chain moieties in binding to the duplex and G-quadruplex DNA, modulation of telomerase and topoisomerase I activities, intracellular accumulation and cytostatic potency, we herein analyzed a series of reported and newly synthesized guanidine-containing derivatives of anthra[2,3-b]thiophene-5,10-dione.

View Article and Find Full Text PDF

Linear heteroareneanthracenediones have been shown to interfere with DNA functions, thereby causing death of human tumor cells and their drug resistant counterparts. Here we report the interaction of our novel antiproliferative agent 4,11-bis[(2-{[acetimido]amino}ethyl)amino]anthra[2,3-b]thiophene-5,10-dione with telomeric DNA structures studied by isothermal titration calorimetry, circular dichroism and UV absorption spectroscopy. New compound demonstrated a high affinity (K(ass)∼10⁶ M⁻¹) for human telomeric antiparallel quadruplex d(TTAGGG)₄ and duplex d(TTAGGG)₄∶d(CCCTAA)₄.

View Article and Find Full Text PDF

The indolocarbazole derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione (AIC) has demonstrated a high potency (at nanomolar to submicromolar concentrations) towards the NCI panel of human tumor cell lines and transplanted tumors. Intercalation into the DNA double helix has been identified as an important prerequisite for AIC cytotoxicity. In this study, we provide evidence for preferential binding to the G-quadruplex derived from the c-Myc oncogene promoter (Pu18 d(AG(3)TG(4))(2); G-c-Myc).

View Article and Find Full Text PDF