Invest Ophthalmol Vis Sci
April 2012
Purpose: The purpose of this study is to probe the mechanical properties of individual eye lens cells isolated from nucleus and cortex of adult sheep eye lens, and to characterize the effect of cytoskeletal drugs.
Methods: We used atomic force microscopy (AFM), featuring a spherical tip at the end of a soft cantilever, to indent single lens cells, and measure the Young's modulus of isolated nuclear and cortical lens cells. Measurements were performed under basal conditions, and after addition of drugs that disrupt actin filaments and microtubules.
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc.
View Article and Find Full Text PDFAnnexins are soluble proteins that bind to biological membranes in a Ca(2+)-dependent manner. Annexin-A6 (AnxA6) is unique in the annexin family as it consists of the repeat of two annexin core modules, while all other annexins consist of a single module. AnxA6 has been proposed to participate in various membrane-related processes, including endocytosis and exocytosis, yet the molecular mechanism of association of AnxA6 with biological membranes, especially its ability to aggregate membranes, is still unclear.
View Article and Find Full Text PDFIn eye core lens membranes, aquaporin-0 (AQP0) and connexins (Cx) form together well-structured supramolecular assemblies, the junctional microdomains, in which they assure water, ion, metabolite, and waste transport. Additionally, they mediate cell-cell adhesion-forming thin junctions (AQP0) and gap junctions (Cx). We have used atomic force microscopy and biochemical methods to analyze and compare the structure of junctional microdomains in human cataract lens membranes from a type II diabetes patient and healthy lens membranes from calf.
View Article and Find Full Text PDFHuman pathologies often originate from molecular disorders. Therefore, imaging technology as one of the bases for the identification and understanding of pathologies must provide views of single molecules at subnanometer resolution. Membrane proteins mediate many of life's most important processes, and their malfunction is often lethal or leads to severe disease.
View Article and Find Full Text PDFMembrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains.
View Article and Find Full Text PDFThe ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane (MOM). Due to its localization, VDAC is involved in a wide range of processes, such as passage of ATP out of mitochondria, and particularly plays a central role in apoptosis. Importantly, the assembly of VDAC provides interaction with a wide range of proteins, some implying oligomerization.
View Article and Find Full Text PDFGap junctions formed by connexons and thin junctions formed by lens-specific aquaporin 0 (AQP0) mediate the tight packing of fibre cells necessary for lens transparency. Gap junctions conduct water, ions and metabolites between cells, whereas junctional AQP0 seems to be involved in cell adhesion. High-resolution atomic force microscopy (AFM) showed the supramolecular organization of these proteins in native lens core membranes, in which AQP0 forms two-dimensional arrays that are surrounded by densely packed gap junction channels.
View Article and Find Full Text PDF