Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes.
View Article and Find Full Text PDFIntroduction: Schizophrenia, although a debilitating mental illness, greatly affects individuals' physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood.
View Article and Find Full Text PDFBackground: Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding.
View Article and Find Full Text PDFBackground: Lipids contained in milk are an essential source of energy and structural materials for a growing neonate. Furthermore, lipids' long-chain unsaturated fatty acid residues can directly participate in neonatal tissue formation. Here, we used untargeted mass spectrometric measurements to assess milk lipid composition in seven mammalian species: humans, two macaque species, cows, goats, yaks, and pigs.
View Article and Find Full Text PDFDespite a large number of proteomic studies of biological fluids from ovarian cancer patients, there is a lack of sensitive screening methods in clinical practice (Kim et al., 2016) (DOI:https://doi.org/10.
View Article and Find Full Text PDFBlood as connective tissue potentially contains evidence of all processes occurring within the organism, at least in trace amounts (Petricoin et al., 2006) [1]. Because of their small size, peptides penetrate cell membranes and epithelial barriers more freely than proteins.
View Article and Find Full Text PDFAs essential conservative component of the innate immune systems of living organisms, antimicrobial peptides (AMPs) could complement pharmaceuticals that increasingly fail to combat various pathogens exhibiting increased resistance to microbial antibiotics. Among the properties of AMPs that suggest their potential as therapeutic agents, diverse peptides in the venoms of various predators demonstrate antimicrobial activity and kill a wide range of microorganisms. To identify potent AMPs, the study reported here involved a transcriptomic profiling of the tentacle secretion of the sea anemone Cnidopus japonicus.
View Article and Find Full Text PDFBackground: Proteomics of bacterial pathogens is a developing field exploring microbial physiology, gene expression and the complex interactions between bacteria and their hosts. One of the complications in proteomic approach is micro- and macro-heterogeneity of bacterial species, which makes it impossible to build a comprehensive database of bacterial genomes for identification, while most of the existing algorithms rely largely on genomic data.
Results: Here we present a large scale study of identification of single amino acid polymorphisms between bacterial strains.
Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients.
View Article and Find Full Text PDFNon-specific binding (NSB) is a well-known problem for any application that deals with ultralow analyte quantities. The modern nano-flow chromatography coupled tandem mass-spectrometry (nanoLC-MS/MS) works with the lowest conceivable analyte concentrations. However, while the NSB problem is widely accepted and investigated for metabolomics and single-peptide medicine-related assays, its impact is not studied for complex peptide mixtures in proteomic applications.
View Article and Find Full Text PDFOvarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome.
View Article and Find Full Text PDF