Publications by authors named "Nikolaus Weber"

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are a widespread group of organic contaminants whose presence in water bodies is cause of severe concern. With few exceptions, the majority of PAHs is hydrophobic, presents a high adsorption affinity, and is thus primarily transported within river systems during high-flow events together with suspended particulate matter (SPM). Evidence exists of analytical challenges related to the incomplete extraction of PAHs adsorbed to solids and thus to a potential negative bias in the chemical analysis of PAHs in bulk water samples with high SPM content.

View Article and Find Full Text PDF

Within the new policy framework shaped by the EU Green Deal and the Circular Economy Action Plans, the field of wastewater and sludge treatment in Europe is subject to high expectations and new challenges related to mitigation of greenhouse gas emissions, micropollutant removal and resource recovery. With respect to phosphorus recovery, several technologies and processes have been thoroughly investigated. Nevertheless, a systemic and detailed understanding of the existing infrastructure and of the related environmental and economic implications is missing.

View Article and Find Full Text PDF

This study investigated the trainability of decision-making and reactive agility via video-based visual training in young athletes. Thirty-four members of a national football academy (age: 14.4 ± 0.

View Article and Find Full Text PDF

Copolymeric polyoxoesters containing branched-chain methylenethiol functions, i.e., poly(1,12-dodecanedioic acid-co-1-thioglycerol) and poly(diethyl 1,12-dodecanedioate-co-1-thioglycerol), were formed by lipase-catalyzed polyesterification and polytransesterification of 1,12-dodecanedioic acid and diethyl 1,12-dodecanedioate, respectively, with 1-thioglycerol (3-mercaptopropane-1,2-diol) using immobilized lipase B from Candida antarctica (Novozym 435) in vacuo without drying agent in the reaction mixture.

View Article and Find Full Text PDF

Various long-chain alkyl (hydroxy)phenylacetates were prepared in high yield by lipase-catalyzed transesterification of the corresponding short-chain alkyl hydroxyphenylacetates and fatty alcohols in equimolar ratios. The reactions were performed in vacuo at moderate temperatures in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica (Novozym 435) was the most effective biocatalyst for the various transesterification reactions.

View Article and Find Full Text PDF

Various medium- or long-chain alkyl cinnamates and hydroxycinnamates, including oleyl p-coumarate as well as palmityl and oleyl ferulates, were prepared in high yield by lipase-catalyzed transesterification of an equimolar mixture of a short-chain alkyl cinnamate and a fatty alcohol such as lauryl, palmityl, and oleyl alcohol under partial vacuum at moderate temperature in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica was the most effective biocatalyst for the various transesterification reactions. Transesterification activity of this enzyme was up to 56-fold higher than esterification activity for the preparation of medium- and long-chain alkyl ferulates.

View Article and Find Full Text PDF

An enzymatic method was developed for the preparation of medium- or long-chain alkyl 3-phenylpropenoates (alkyl cinnamates), particularly alkyl hydroxy- and methoxy-substituted cinnamates such as oleyl p-coumarate and oleyl ferulate. The various alkyl cinnamates were formed in high to moderate yield by lipase-catalyzed esterification of cinnamic acid and its analogues with fatty alcohols in vacuo at moderate temperatures in the absence of drying agents and solvents. Immobilized Candida antarctica lipase B was the most effective biocatalyst for the various esterification reactions.

View Article and Find Full Text PDF

Medium- and long-chain dialkyl 3,3'-thiodipropionate antioxidants such as dioctyl 3,3'-thiodipropionate, didodecyl 3,3'-thiodipropionate, dihexadecyl 3,3'-thiodipropionate, and di-(cis-9-octadecenyl) 3,3'-thiodipropionate were prepared in high yield by lipase-catalyzed esterification and transesterification of 3,3'-thiodipropionic acid and its dimethyl ester, respectively, with the corresponding medium- or long-chain 1-alkanols, i.e., 1-octanol, 1-dodecanol, 1-hexadecanol, and cis-9-octadecen-1-ol, in vacuo (80 kPa) at moderate temperatures (60-80 degrees C) without solvents.

View Article and Find Full Text PDF

The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5'His(6)WS/DGAT comprising an N-terminal His(6) tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5'His(6)atf).

View Article and Find Full Text PDF

Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols.

View Article and Find Full Text PDF

We report the stereospecific (sn-1, sn-2, sn-3) distribution of fatty acids in subcutaneous adipose tissue triacylglycerols of male weaned Wistar rats fed either a standard diet or diets containing, in addition to 20 g corn oil/kg feed, 120 g/kg feed, each, of canola-type rapeseed oil, olive oil, conventional or high oleic sunflower oil or high petroselinic coriander oil for 10 wk. The regiospecific distribution of the major acyl moieties in the sn-1 (3) vs. sn-2 positions of the adipose tissue triacylglycerols broadly reflected that of the dietary oils.

View Article and Find Full Text PDF

We report the composition of constituent fatty acids and molecular species of adipose tissue triacylglycerols of male weaned Wistar rats fed diets containing, in addition to 20 g corn oil/kg feed, 120 g per kg feed canola-type rapeseed oil, olive oil or conventional sunflower oil for 10 wk. The composition of fatty acids and molecular species of the triacylglycerols of subcutaneous, epididymal and perirenal adipose tissues did not differ among groups (P > 0.01), broadly reflecting the corresponding compositions of the dietary oils.

View Article and Find Full Text PDF