Publications by authors named "Nikolaus Pfanner"

Yeast deletion mutants of crucial genes are often associated with a number of secondary defects, which hamper the analysis of primary protein function. Therefore, temperature-sensitive mutants are valuable tools to evaluate protein function in a focused and often reversible manner. However, temperature-sensitive mutants are uncommon for non-essential genes that nevertheless may have strong defects.

View Article and Find Full Text PDF

β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins.

View Article and Find Full Text PDF

The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far.

View Article and Find Full Text PDF

Mitochondria import 1000-1300 different precursor proteins from the cytosol. The main mitochondrial entry gate is formed by the translocase of the outer membrane (TOM complex). Molecular coupling and modification of TOM subunits control and modulate protein import in response to cellular signaling.

View Article and Find Full Text PDF

Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions.

View Article and Find Full Text PDF

Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation.

View Article and Find Full Text PDF

Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors.

View Article and Find Full Text PDF

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The composition of the mitochondrial proteome has been characterized; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome.

View Article and Find Full Text PDF

Mitochondrial β-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic β-barrel folding intermediate.

View Article and Find Full Text PDF

Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric FF-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions.

View Article and Find Full Text PDF

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP).

View Article and Find Full Text PDF

The mitochondrial genome encodes proteins central to mitochondrial function; however, transcript-specific mechanistic studies of mitochondrial gene products have been difficult because of challenges in their experimental manipulation. Cruz-Zaragoza et al. provide a solution to this challenge, introducing an elegant system for efficient translational silencing of transcripts in human mitochondria.

View Article and Find Full Text PDF

The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB). Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.

View Article and Find Full Text PDF

The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane β-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of β-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood.

View Article and Find Full Text PDF

Mitochondria are deeply integrated into crucial functions of eukaryotic cells, including ATP production via oxidative phosphorylation, biosynthesis of iron-sulfur clusters, amino acids, lipids and heme, signaling pathways, and programmed cell death. The import of about 1000 different proteins that are produced as precursors on cytosolic ribosomes is essential for mitochondrial functions and biogenesis. The translocase of the outer mitochondrial membrane (TOM) forms the entry gate for the vast majority of mitochondrial proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The mitochondrial pyruvate carrier (MPC) is crucial for energy metabolism, transporting pyruvate across the mitochondrial membrane, and is distinct from typical transporters due to its unique structure.
  • Recent research demonstrates that instead of the expected flexible presequence pathway, MPC proteins (Mpc2 and Mpc3) are imported into mitochondria via the carrier pathway, involving the receptor Tom70 and other helper proteins.
  • This study highlights the carrier pathway's flexibility in importing different types of proteins, indicating it can accommodate a variety of transmembrane structures and positions of N-termini, which broadens our understanding of mitochondrial import mechanisms.
View Article and Find Full Text PDF

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex at 3.8-Å resolution.

View Article and Find Full Text PDF

Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments.

View Article and Find Full Text PDF

Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria.

View Article and Find Full Text PDF

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation.

View Article and Find Full Text PDF

Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks.

View Article and Find Full Text PDF

Mitochondria possess elaborate machineries for the import of proteins from the cytosol. Cytosolic factors like Hsp70 chaperones and their co-chaperones, the J-proteins, guide proteins to the mitochondrial surface. The translocase of the mitochondrial outer membrane (TOM) forms the entry gate for preproteins.

View Article and Find Full Text PDF