Publications by authors named "Nikolaus Hansen"

Several test function suites are being used for numerical benchmarking of multiobjective optimization algorithms. While they have some desirable properties, such as well-understood Pareto sets and Pareto fronts of various shapes, most of the currently used functions possess characteristics that are arguably underrepresented in real-world problems such as separability, optima located exactly at the boundary constraints, and the existence of variables that solely control the distance between a solution and the Pareto front. Via the alternative construction of combining existing single-objective problems from the literature, we describe the bbob-biobj test suite with 55 bi-objective functions in continuous domain, and its extended version with 92 bi-objective functions (bbob-biobj-ext).

View Article and Find Full Text PDF

This paper analyzes a (1, λ)-Evolution Strategy, a randomized comparison-based adaptive search algorithm optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first, the case where the step-size is constant, and second, the case where the step-size is adapted using cumulative step-size adaptation.

View Article and Find Full Text PDF

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule.

View Article and Find Full Text PDF

This paper investigates sigma-self-adaptation for real valued evolutionary algorithms on linear fitness functions. We identify the step-size logarithm log sigma as a key quantity to understand strategy behavior. Knowing the bias of mutation, recombination, and selection on log sigma is sufficient to explain sigma-dynamics and strategy behavior in many cases, even from previously reported results on non-linear and/or noisy fitness functions.

View Article and Find Full Text PDF

This paper presents a novel evolutionary optimization strategy based on the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). This new approach is intended to reduce the number of generations required for convergence to the optimum. Reducing the number of generations, i.

View Article and Find Full Text PDF