Publications by authors named "Nikolaus A Watson"

Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification.

View Article and Find Full Text PDF

There are thousands of known cellular phosphorylation sites, but the paucity of ways to identify kinases for particular phosphorylation events remains a major roadblock for understanding kinase signaling. To address this, we here develop a generally applicable method that exploits the large number of kinase inhibitors that have been profiled on near-kinome-wide panels of protein kinases. The inhibition profile for each kinase provides a fingerprint that allows identification of unknown kinases acting on target phosphosites in cell extracts.

View Article and Find Full Text PDF

Faithful mitotic chromosome segregation is required for the maintenance of genomic stability. We discovered the phosphorylation of histone H2B at serine 6 (H2B S6ph) as a new chromatin modification site and found that this modification occurs during the early mitotic phases at inner centromeres and pericentromeric heterochromatin. This modification is directly mediated by cyclin B1-associated CDK1, and indirectly by Aurora B, and is antagonized by PP1-mediated dephosphorylation.

View Article and Find Full Text PDF