Publications by authors named "Nikolas Vellnow"

To concisely describe how genetic variation, at individual loci or across whole genomes, changes over time, and to follow transitory allelic changes, we introduce a quantity related to entropy, that we term pseudoentropy. This quantity emerges in a diffusion analysis of the mean time a mutation segregates in a population. For a neutral locus with an arbitrary number of alleles, the mean time of segregation is generally proportional to the pseudoentropy of initial allele frequencies.

View Article and Find Full Text PDF

In species with multiple mating, intense sexual selection may occur both before and after copulation. However, comparing the strength of pre- and postcopulatory selection is challenging, because (i) postcopulatory processes are generally difficult to observe and (ii) the often-used opportunity for selection () metric contains both deterministic and stochastic components. Here, we quantified pre- and postcopulatory male fitness components of the simultaneously hermaphroditic flatworm, .

View Article and Find Full Text PDF

In sexually reproducing species, males often experience strong pre- and postcopulatory sexual selection leading to a wide variety of male adaptations. One example is mate guarding, where males prevent females from mating with other males either before or after they (will) have mated themselves. In case social conditions vary short term and in an unpredictable manner and if there is genetic variation in plasticity of mate guarding (i.

View Article and Find Full Text PDF

Sex allocation (SA) theory for simultaneous hermaphrodites predicts an influence of group size on SA. Since group size can vary within an individual's lifetime, this can favor the evolution of phenotypically plastic SA. In an emerging comparative context, we here report on SA plasticity in three closely related flatworm species, namely , , and .

View Article and Find Full Text PDF

Background: Cytoplasmic sex allocation distorters, which arise from cytonuclear conflict over the optimal investment into male versus female reproductive function, are some of the best-researched examples for genomic conflict. Among hermaphrodites, many such distorters have been found in plants, while, to our knowledge, none have been clearly documented in animals.

Methods: Here we provide a quantitative test for cytonuclear conflict over sex allocation in the simultaneously hermaphroditic flatworm Macrostomum lignano.

View Article and Find Full Text PDF

There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis.

View Article and Find Full Text PDF

Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex-specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection.

View Article and Find Full Text PDF