Background: In response to the SARS-CoV-2 pandemic, the Austrian governmental crisis unit commissioned a forecast consortium with regularly projections of case numbers and demand for hospital beds. The goal was to assess how likely Austrian ICUs would become overburdened with COVID-19 patients in the upcoming weeks.
Methods: We consolidated the output of three epidemiological models (ranging from agent-based micro simulation to parsimonious compartmental models) and published weekly short-term forecasts for the number of confirmed cases as well as estimates and upper bounds for the required hospital beds.
The drivers behind regional differences of SARS-CoV-2 spread on finer spatio-temporal scales are yet to be fully understood. Here we develop a data-driven modelling approach based on an age-structured compartmental model that compares 116 Austrian regions to a suitably chosen control set of regions to explain variations in local transmission rates through a combination of meteorological factors, non-pharmaceutical interventions and mobility. We find that more than 60% of the observed regional variations can be explained by these factors.
View Article and Find Full Text PDFIn late 2019 a new coronavirus disease (COVID-19) emerged, causing a global pandemic within only a few weeks. A crucial factor in the public health response to pandemics is achieving a short turnaround time between a potential case becoming known, specimen collection and availability of a test result. In this article we address a logistics problem that arises in the context of testing potential cases.
View Article and Find Full Text PDF(1) Background: The Austrian supply of COVID-19 vaccine is limited for now. We aim to provide evidence-based guidance to the authorities in order to minimize COVID-19-related hospitalizations and deaths in Austria. (2) Methods: We used a dynamic agent-based population model to compare different vaccination strategies targeted to the elderly (65 ≥ years), middle aged (45-64 years), younger (15-44 years), vulnerable (risk of severe disease due to comorbidities), and healthcare workers (HCW).
View Article and Find Full Text PDFSpatio-temporal patterns of melanocytic proliferations observed in vivo are important for diagnosis but the mechanisms that produce them are poorly understood. Here we present an agent-based model for simulating the emergence of the main biologic patterns found in melanocytic proliferations. Our model portrays the extracellular matrix of the dermo-epidermal junction as a two-dimensional manifold and we simulate cellular migration in terms of geometric translations driven by adhesive, repulsive and random forces.
View Article and Find Full Text PDFFor the evaluation of infectious-diseases interventions, the transmissible nature of such diseases plays a central role. Agent-based models (ABM) allow for dynamic transmission modeling but publications are limited. We aim to provide an overview of important characteristics of ABM for decision-analytic modeling of infectious diseases.
View Article and Find Full Text PDF