Publications by authors named "Nikolas K Knowles"

Single-energy quantitative computed tomography (SEQCT) provides volumetric bone mineral density (vBMD) measures for bone analysis and input to image-based finite element models (FEMs). Dual-energy CT (DECT) improves vBMD by accounting for voxel-specific material variations utilizing scans at multiple x-ray energies. vBMD is also altered by reconstruction kernel that cannot be accounted for using calibration phantoms.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the accuracy and reproducibility of four common segmentation techniques measuring subchondral bone cyst volume in clinical-CT scans of glenohumeral OA patients.

Methods: Ten humeral head osteotomies collected from cystic OA patients, having undergone total shoulder arthroplasty, were scanned within a micro-CT scanner, and corresponding preoperative clinical-CT scans were gathered. Cyst volumes were measured manually in micro-CT and served as a reference standard (n = 13).

View Article and Find Full Text PDF

Background: Image-based finite element (FE) modeling of bone is a non-invasive method to estimate bone stiffness and strength. High-resolution imaging data as input allows for inclusion of bone microarchitecture but results in large amounts of data unsuitable for traditional FE solvers. Bone-specific mesh-free solvers have been developed over the past 20 years to improve on memory efficiency in simulated bone loading applications.

View Article and Find Full Text PDF

Musculoskeletal injuries often induce local accumulation of blood and/or fluid within the bone marrow, which is detected on medical imaging as edema-like marrow signal intensities (EMSI). In addition to its biological effects on post-injury recovery, the displacement of low-attenuating, largely adipocytic marrow by EMSI may introduce errors into quantitative computed tomography (QCT) measurements of bone mineral density (vBMD) and resulting bone stiffness estimates from image-based finite element (FE) analysis. We aimed to investigate the impact of post-injury changes in marrow soft tissue composition on CT-based bone measurements by applying CT imaging at multiple spatial resolutions.

View Article and Find Full Text PDF

Subchondral trabecular bone (STB) undergoes adaptive changes during osteoarthritic (OA) disease progression. These changes alter both the mineralization patterns and structure of bone and may contribute to variations in the mechanical properties. Similarly, when images are downsampled - as is often performed in micro finite element model (microFEM) generation - the morphological and mineralization patterns may further alter the mechanical properties due to partial volume effects.

View Article and Find Full Text PDF

Background: The coronoid process is an important stabilizer of the elbow, and its anatomy has been extensively studied. However, data documenting the relationship of the coronoid relative to the radial head (RH) are limited. The latter is a good landmark for the surgeon when débriding or reconstructing the coronoid.

View Article and Find Full Text PDF

Injury to the ACL significantly increases the risk of developing post-traumatic osteoarthritis. Following injury, considerable focus is placed on visualizing soft tissue changes using MRI, but there is less emphasis on the alterations to the underlying bone. It has recently been shown using high-resolution peripheral quantitative computed tomography (HR-pQCT) that significant reductions in bone quality occur in the knee post ACL-injury.

View Article and Find Full Text PDF

Background: The coronoid process plays a vital role in preserving elbow stability. In cases of acute or chronic deficiency of the coronoid process, reconstruction is warranted to restore stability and to avoid early joint degeneration. The distal clavicle might be a useful osteochondral autograft for coronoid reconstruction with low donor-site morbidity.

View Article and Find Full Text PDF

Background: Joint registries provide invaluable data on primary arthroplasties with revision as the endpoint; however, the revision outcomes are often excluded. Therefore, a PROSPERO registered review (CRD42015032531) of all revision studies in North America and Europe was conducted to evaluate demographics, etiologies and indications, implant manufacturer, and complications by geographic region.

Methods: The MEDLINE, EMBASE, and CENTRAL databases were searched for revision arthroplasty clinical studies with a minimum mean 24-month follow-up.

View Article and Find Full Text PDF

Background: The purpose of this study was 2-fold: (1) to quantify type E2 bone loss orientation and its association with rotator cuff fatty infiltration and (2) to examine reverse baseplate designs used to manage type E2 glenoids.

Methods: Computed tomography scans of 40 patients with type E2 glenoids were examined for pathoanatomic features and erosion orientation. The rotator cuff fatty infiltration grade was compared with the erosion orientation angle.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by morphological changes that alter bone structure and mechanical properties. This study compared bone morphometric parameters and apparent modulus between humeral heads excised from end-stage OA patients undergoing total shoulder arthroplasty (n = 28) and non-pathologic normal cadavers (n = 28). Morphometric parameters were determined in central cores, with regional variations compared in four medial to lateral regions.

View Article and Find Full Text PDF

Background: Little is known about the cortical-like and cancellous bone density variations in superiorly eroded glenoids due to cuff tear arthropathy. The purpose of this study was to analyze regional bone density in type E2 glenoids.

Methods: Clinical shoulder computed tomography scans were obtained from 32 patients with a type E2 superior erosion (10 men and 22 women; mean age, 73 years).

View Article and Find Full Text PDF

The article Material Mapping of QCT-Derived Scapular Models: A Comparison with Micro-CT Loaded Specimens Using Digital Volume Correlation, written by Knowles et al, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 11 July 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on [August 30] to © The Author(s) 2019 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.

View Article and Find Full Text PDF

Subject- and site-specific modeling techniques greatly improve finite element models (FEMs) derived from clinical-resolution CT data. A variety of density-modulus relationships are used in scapula FEMs, but the sensitivity to selection of relationships has yet to be experimentally evaluated. The objectives of this study were to compare quantitative-CT (QCT) derived FEMs mapped with different density-modulus relationships and material mapping strategies to experimentally loaded cadaveric scapular specimens.

View Article and Find Full Text PDF

Background: The Walch type B glenoid has the hallmark features of retroversion, joint subluxation, and bony erosion. Although the type B glenoid has been well described, the morphology of the corresponding type B humerus is poorly understood. As such, the aim of this imaging-based anthropometric study was to investigate humeral torsion in Walch type B shoulders.

View Article and Find Full Text PDF

Subject- and site-specific modeling techniques greatly improve the accuracy of computational models derived from clinical-resolution quantitative computed tomography (QCT) data. The majority of shoulder finite element (FE) studies use density-modulus relationships developed for alternative anatomical locations. As such, the objectives of this study were to compare the six most commonly used density-modulus relationships in shoulder finite element (FE) studies.

View Article and Find Full Text PDF

Background: The integrity of the coronoid process is critical to maintaining elbow stability. Unreconstructible fractures and chronic coronoid deficiency are challenging clinical problems with no clear solution. The purposes of this study were to investigate the shape match of the ipsilateral and contralateral olecranon tips as graft options and to determine the influence of the osteotomy angle on fitment.

View Article and Find Full Text PDF

Glenoid component stability is essential to ensure successful long-term survivability following total shoulder arthroplasty. As such, this computational study assessed the stability of five all-polyethylene glenoid components (Keel, Central-Finned 4-Peg, Peripheral 4-Peg, Cross-Keel, and Inverted-Y), using simulated joint loading in an osteoarthritic patient cohort. Stability was assessed on the basis of component micromotion in the tangential and normal directions.

View Article and Find Full Text PDF

Incorporating subject-specific mechanical properties derived from clinical-resolution computed tomography data increases the accuracy of finite element models. Site-specific relationships between density and modulus are required due to variations in trabecular architecture and tissue density by anatomic location. Equations have been developed for many anatomic locations and have been shown to have excellent statistical agreement with empirical results; however, a shoulder-specific density-modulus relationship does not currently exist.

View Article and Find Full Text PDF

Preclinical and clinical bone strength predictions can be elucidated by understanding bone mechanics at a variety of hierarchical levels. As such, down-sampled micro-CT images are often used to make comparisons across image resolutions or used to reduce computational resources in micro finite element models (µFEMs). Therefore, the objectives of this study were to compare trabecular apparent modulus among (i) hexahedral and tetrahedral µFEMs, (ii) µFEMs generated from 32, 64, and 64 µm down-sampled from 32 µm µCT scans, and (iii) µFEMs with homogeneous and heterogeneous tissue moduli.

View Article and Find Full Text PDF

Background: The Walch B3 glenoid is theorized to be a progression of the B2 biconcave pattern. The present study aimed to compare glenoid indices between B2 and B3 patterns. We hypothesized that the B3 pattern would have significantly worse retroversion, inclination and medialization.

View Article and Find Full Text PDF

Quantitative computed tomography (qCT) relies on calibrated bone mineral density data. If a calibration phantom is absent from the CT scan, post hoc calibration becomes necessary. Scanning a calibration phantom after-the-fact and applying that calibration to uncalibrated scans has been used previously.

View Article and Find Full Text PDF

Background: Accurate humeral head reconstruction during shoulder arthroplasty is partially dependent on correctly estimating and replicating native version. The present study evaluated the effects of sex and measurement technique on three-dimensional (3D) humeral version measurements made using the transepicondylar, forearm and flexion-extension axes.

Methods: Fifty-two full-arm computed tomography scans were converted to 3D models and geometry extracted to define landmarks and coordinate systems.

View Article and Find Full Text PDF

Background: The type B3 glenoid is an addition to the Walch classification. A potential etiologic theory is that it is a progression of the B2. It is characterized by uniconcavity, absent paleoglenoid, medialization, retroversion, and subluxation.

View Article and Find Full Text PDF

Background: Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD.

View Article and Find Full Text PDF