Publications by authors named "Nikolas Fechner"

Chemical structure optimization is a vital part of early drug discovery projects. Starting with compounds that show activity on the target of interest, the chemical structures are subsequently optimized toward a development candidate (DC) molecule with the best chances of clinical success. However, the DCs in the context of such optimization programs, as well as detailed characterization of major limiting factors, have not been investigated in detail so far.

View Article and Find Full Text PDF

Early assessment of the potential of a series of compounds to deliver a drug is one of the major challenges in computer-assisted drug design. The goal is to identify the right chemical series of compounds out of a large chemical space to then subsequently prioritize the molecules with the highest potential to become a drug. Although multiple approaches to assess compounds have been developed over decades, the quality of these predictors is often not good enough and compounds that agree with the respective estimates are not necessarily druglike.

View Article and Find Full Text PDF

Federated multipartner machine learning has been touted as an appealing and efficient method to increase the effective training data volume and thereby the predictivity of models, particularly when the generation of training data is resource-intensive. In the landmark MELLODDY project, indeed, each of ten pharmaceutical companies realized aggregated improvements on its own classification or regression models through federated learning. To this end, they leveraged a novel implementation extending multitask learning across partners, on a platform audited for privacy and security.

View Article and Find Full Text PDF

Machine-learning and deep-learning models have been extensively used in cheminformatics to predict molecular properties, to reduce the need for direct measurements, and to accelerate compound prioritization. However, different setups and frameworks and the large number of molecular representations make it difficult to properly evaluate, reproduce, and compare them. Here we present a new PREdictive modeling FramEwoRk for molecular discovery (PREFER), written in Python (version 3.

View Article and Find Full Text PDF

In the drug development process, optimization of properties and biological activities of small molecules is an important task to obtain drug candidates with optimal efficacy when first applied in subsequent clinical studies. However, despite its importance, large-scale investigations of the optimization process in early drug discovery are lacking, likely due to the absence of historical records of different chemical series used in past projects. Here, we report a retrospective reconstruction of ∼3000 chemical series from the Novartis compound database, which allows us to characterize the general properties of chemical series as well as the time evolution of structural properties, ADMET properties, and target activities.

View Article and Find Full Text PDF

This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties.

View Article and Find Full Text PDF

We investigate different automated approaches for the classification of chemical series in early drug discovery, with the aim of closely mimicking human chemical series conception. Chemical series, which are commonly defined by hand-drawn scaffolds, organize datasets in drug discovery projects. Often, they form the basis for further project decisions.

View Article and Find Full Text PDF

Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced.

View Article and Find Full Text PDF

Big data is one of the key transformative factors which increasingly influences all aspects of modern life. Although this transformation brings vast opportunities it also generates novel challenges, not the least of which is organizing and searching this data deluge. The field of medicinal chemistry is not different: more and more data are being generated, for instance, by technologies such as DNA encoded libraries, peptide libraries, text mining of large literature corpora, and new in silico enumeration methods.

View Article and Find Full Text PDF

The concept of data fusion - the combination of information from different sources describing the same object with the expectation to generate a more accurate representation - has found application in a very broad range of disciplines. In the context of ligand-based virtual screening (VS), data fusion has been applied to combine knowledge from either different active molecules or different fingerprints to improve similarity search performance. Machine-learning (ML) methods based on fusion of multiple homogeneous classifiers, in particular random forests, have also been widely applied in the ML literature.

View Article and Find Full Text PDF

The ChEMBLSpace graphical explorer enables the identification of compounds from the ChEMBL database, which exhibit a desirable polypharmacology profile. This profile can be predefined or created iteratively, and the tool can be extended to other data sources.

View Article and Find Full Text PDF

Background: The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining.

View Article and Find Full Text PDF

The goal of this study was to adapt a recently proposed linear large-scale support vector machine to large-scale binary cheminformatics classification problems and to assess its performance on various benchmarks using virtual screening performance measures. We extended the large-scale linear support vector machine library LIBLINEAR with state-of-the-art virtual high-throughput screening metrics to train classifiers on whole large and unbalanced data sets. The formulation of this linear support machine has an excellent performance if applied to high-dimensional sparse feature vectors.

View Article and Find Full Text PDF

We present a new probabilistic encoding of the conformational space of a molecule that allows for the integration into common similarity calculations. The method uses distance profiles of flexible atom-pairs and computes generative models that describe the distance distribution in the conformational space. The generative models permit the use of probabilistic kernel functions and, therefore, our approach can be used to extend existing 3D molecular kernel functions, as applied in support vector machines, to build QSAR models.

View Article and Find Full Text PDF

Background: The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable.

View Article and Find Full Text PDF

Background: Ligand-based virtual screening experiments are an important task in the early drug discovery stage. An ambitious aim in each experiment is to disclose active structures based on new scaffolds. To perform these "scaffold-hoppings" for individual problems and targets, a plethora of different similarity methods based on diverse techniques were published in the last years.

View Article and Find Full Text PDF

In this work, we introduce a new method to regard the geometry in a structural similarity measure by approximating the conformational space of a molecule. Our idea is to break down the molecular conformation into the local conformations of neighbor atoms with respect to core atoms. This local geometry can be implicitly accessed by the trajectories of the neighboring atoms, which are emerge by rotatable bonds.

View Article and Find Full Text PDF