In the present research work is demonstrated a cross-scale manufacturing approach for the production of multifunctional glass fiber reinforced polymer (GFRP) composite tubes with a purposely redesigned filament winding process. Up until now, limited studies have been reported towards the multiscale reinforcement direction of continuous fibers for the manufacturing of hierarchical composites at the industrial level. This study involved the development of two different multi-walled carbon nanotube (MWCNT) aqueous-based inks, which were employed for the modification of commercial glass fiber (GF) reinforcing tows via a bath coating unit in a pilot production line.
View Article and Find Full Text PDFOptical coupling between single core to multi-core optical fibers usually takes place by means of optical fiber fan-ins / fan-outs, delicate free space optics, or laser inscribed freeform waveguides. In the present work, the two-photon polymerization technique is used for the first time to create a waveguide manifold on top of a four-core optical fiber tip as a means to couple light into and from a single core optical fiber, in a fast and low-cost fashion. It is demonstrated that the performance is influenced by the numerical aperture mismatch between the fabricated and the coupled waveguides.
View Article and Find Full Text PDF