Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions.
View Article and Find Full Text PDFAlthough plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators.
View Article and Find Full Text PDFDuring the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20.
View Article and Find Full Text PDFSynthetic biologists have made great progress over the past decade in developing methods for modular assembly of genetic sequences and in engineering biological systems with a wide variety of functions in various contexts and organisms. However, current paradigms in the field entangle sequence and functionality in a manner that makes abstraction difficult, reduces engineering flexibility and impairs predictability and design reuse. Functional Synthetic Biology aims to overcome these impediments by focusing the design of biological systems on function, rather than on sequence.
View Article and Find Full Text PDFPlants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions.
View Article and Find Full Text PDF