Publications by authors named "Nikolaos Lempesis"

The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions.

View Article and Find Full Text PDF

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates.

View Article and Find Full Text PDF

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer.

View Article and Find Full Text PDF

An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how--and mainly when--subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e.

View Article and Find Full Text PDF

In this work we develop, test, and implement a methodology that is able to perform, in an automated manner, "lumping" of a high-dimensional, discrete dynamical system onto a lower-dimensional space. Our aim is to develop an algorithm which, without any assumption about the nature of the system's slow dynamics, is able to reproduce accurately the long-time dynamics with minimal loss of information. Both the original and the lumped systems conform to master equations, related via the "lumping" analysis introduced by Wei and Kuo [Ind.

View Article and Find Full Text PDF

In this work we propose a methodology for improving dynamical sampling in molecular simulations via temperature acceleration. The proposed approach combines the novel methods of Voter for temperature-accelerated dynamics with the multiple histogram reweighting method of Ferrenberg and Swendsen, its dynamical extension by Nieto-Draghi et al., and with hazard plot analysis, allowing optimal sampling with small computational cost over time scales inaccessible to classical molecular dynamics simulations by utilizing the "inherent structure" idea.

View Article and Find Full Text PDF

In a previous paper, we investigated the role of inherent structures in the vitrification process of glass-forming materials, showing that the dynamical transitions between inherent structures (states) can be well predicted by a first-order kinetic scheme based on infrequent-event theory at low temperatures. In this work, we utilize and extend that methodology in order to completely reconstruct the system dynamics in the form of the mean square atomic displacement as a function of time at finite temperatures on the basis of the succession of transitions in a network of states, the vibrational contribution being evaluated on the basis of short molecular dynamics runs artificially trapped within each one of the states. In order to do so, we provide the mathematical formulation for lifting the coarse-grained Poisson process model of transitions between states back to the atomistic level and thereby reproducing the full dynamics of the atomistic system within the Poisson approximation.

View Article and Find Full Text PDF

In this work, we investigate the role of inherent structures in the vitrification process of glass-forming materials by using a two-component Lennard-Jones mixture. We start with a simplified model that describes the dynamics of the atomistic system as a Poisson process consisting of a series of transitions from one potential energy minimum (inherent structure) to another, the rate of individual transitions being described by a first-order kinetic law. We investigate the validity of this model by comparing the mean square displacement resulting from atomistic molecular dynamics (MD) trajectories with the corresponding mean square displacement based on inherent structures.

View Article and Find Full Text PDF