Background: Brain metastases are the most common intracranial malignancy and remain a substantial source of morbidity and mortality in cancer patients. Linear accelerator based stereotactic radiosurgery (SRS) is widely used and is frequently delivered by hypo-fractionnated volumetric modulated arc therapy using non-coplanar beams, where geometric accuracy and planning margins are a major concern.
Purpose: To give a practical analysis of intrafraction patient motion for multi-target, single isocentre, brain SRS treatments and to derive adapted GTV-to-PTV margins.
Purpose: To assess in a prospective, multicenter, single-arm phase I/II study the early safety and efficacy profile of single fraction urethra-sparing stereotactic body radiotherapy (SBRT) for men with localized prostate cancer.
Material And Methods: Patients with low- and intermediate-risk localized prostate cancer without significant tumor in the transitional zone were recruited. A single-fraction of 19 Gy was delivered to the prostate, with 17 Gy dose-reduction to the urethra.
Purpose: Consistency in delineation of pelvic lymph node regions for prostate cancer elective nodal radiation therapy is still challenging despite current guidelines. The aim of this study was to evaluate the interobserver variability in elective lymph node delineation in the PEACE V STORM randomized phase 2 trial for oligorecurrent nodal prostate cancer.
Methods And Materials: Twenty-three centers were asked to delineate the elective pelvic nodal clinical target volume (CTV) of a postoperative oligorecurrent nodal prostate cancer benchmark case using a modified Radiation Therapy Oncology Group (RTOG) 2009 template (upper limit at the L4/L5 interspace).
Purpose: Aim of this study is to report the results of the radiotherapy quality assurance program of the PEACE V-STORM randomized phase II trial for pelvic nodal oligorecurrent prostate cancer (PCa).
Material And Methods: A benchmark case (BC) consisting of a postoperative case with 2 nodal recurrences was used for both stereotactic body radiotherapy (SBRT, 30 Gy/3 fx) and whole pelvic radiotherapy (WPRT, 45 Gy/25 fx + SIB boost to 65 Gy).
Results: BC of 24 centers were analyzed.
Purpose: Metallic hip implants (MHI) are common in elderly patients. For pelvic cancers radiotherapy, conventional approaches consist of MHI avoidance during treatment planning, which leads, especially in case of bilateral MHI, to a decreased quality or increased complexity of the treatment plan. The aim of this study is to investigate the necessity of using avoidance sectors (AvSe) using a 2-arcs coplanar pelvic volumetric modulated arc-therapy (VMAT) planning.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative condition affecting memory performance. This pathology is characterized by intracerebral amyloid plaques and tau tangles coupled with neuroinflammation. During the last century, numerous therapeutic trials unfortunately failed highlighting the need to find new therapeutic approaches.
View Article and Find Full Text PDFPurpose: To reconstruct the dose delivered during single-fraction urethra-sparing prostate stereotactic body radiotherapy (SBRT) accounting for intrafraction motion monitored by intraprostatic electromagnetic transponders (EMT).
Methods: We analyzed data of 15 patients included in the phase I/II "ONE SHOT" trial and treated with a single fraction of 19 Gy to the planning target volume (PTV) and 17 Gy to the urethra planning risk volume. During delivery, prostate motion was tracked with implanted EMT.
Purpose: New therapeutic options in radiotherapy (RT) are often explored in preclinical in-vivo studies using small animals. We report here on the feasibility of modern megavoltage (MV) linear accelerator (LINAC)-based RT for small animals using easy-to-use consumer 3D printing technology for dosimetric optimization and quality assurance (QA).
Methods: In this study we aimed to deliver 5×2Gy to the half-brain of a rat using a 4MV direct hemi-field X-ray beam.
The ONE SHOT trial is the first phase I/II prospective, multicenter, single-arm study assessing the efficacy and safety of a single-dose SBRT for men with localized prostate cancer. Aim of this paper is to present the phase I results of a 19 Gy single fraction urethra-sparing SBRT with real-time electromagnetic tracking.
View Article and Find Full Text PDFPurpose: Magnetic resonance imaging (MRI)-guided radiation therapy (RT) treatment planning is limited by the fact that the electron density distribution required for dose calculation is not readily provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms recently reported in the literature, including segmentation-based, atlas-based and machine learning techniques, using the same cohort of patients and quantitative evaluation metrics.
Methods: Six MRI-guided synthetic CT generation algorithms were evaluated: one segmentation technique into a single tissue class (water-only), four atlas-based techniques, namely, median value of atlas images (ALMedian), atlas-based local weighted voting (ALWV), bone enhanced atlas-based local weighted voting (ALWV-Bone), iterative atlas-based local weighted voting (ALWV-Iter), and a machine learning technique using deep convolution neural network (DCNN).
Background: Stereotactic body radiotherapy (SBRT) is an emerging treatment alternative for patients with localized prostate cancer. Promising results in terms of disease control and toxicity have been reported with 4 to 5 SBRT fractions. However, question of how far can the number of fractions with SBRT be reduced is a challenging research matter.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach.
View Article and Find Full Text PDF