The COVID-19 pandemic has had a devastating effect on many industries around the world including tourism and policy makers are interested in mapping out what the recovery path will look like. We propose a novel statistical methodology for generating scenario-based probabilistic forecasts based on a large survey of 443 tourism experts and stakeholders. The scenarios map out pessimistic, most-likely and optimistic paths to recovery.
View Article and Find Full Text PDFCOVID-19 disrupted international tourism worldwide, subsequently presenting forecasters with a challenging conundrum. In this competition, we predict international arrivals for 20 destinations in two phases: (i) Ex post forecasts pre-COVID; (ii) Ex ante forecasts during and after the pandemic up to end 2021. Our results show that univariate combined with cross-sectional hierarchical forecasting techniques (ieF-ETS) outperform multivariate models pre-COVID.
View Article and Find Full Text PDF