This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in high-temperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry.
View Article and Find Full Text PDFIn recent nanomaterials research, combining nanoporous carbons with metallic nanoparticles, like palladium (Pd), has emerged as a focus due to their potential in energy, environmental and biomedical fields. This study presents a novel approach for synthesizing Pd-decorated carbons using magnetron sputter deposition. This method allows for the functionalization of nanoporous carbon surfaces with Pd nano-sized islands, creating metal-carbon nanocomposites through brief deposition times of up to 15 s.
View Article and Find Full Text PDFThe adsorption of actinide ions (Am(III) and U(VI)) from aqueous solutions using pristine and oxidized carbon fabrics was investigated by means of batch experiments at different pH values (pH 4, 7 and 9) and temperatures (25, 35 and 45 °C) under ambient atmospheric conditions. The experimental results indicated that both the pH and the fabric texture affected the adsorption rate and the relative removal efficiency, which was 70% and 100% for Am(III) and U(VI), respectively. The K (L/kg) values for U(VI) were generally found to be higher (2 < log(K)< 3) than the corresponding values for Am(III) adsorption (1.
View Article and Find Full Text PDFCoffee, as one of the most traded resources, generates a vast amount of biogenic by-products. Coffee silver skins (CSS), a side stream from the roasting process, account for about 4 wt.%.
View Article and Find Full Text PDFThis paper reports a study involving the formation of a self-assembled polymeric monolayer on the surface of a high surface area activated carbon to engineer its affinity towards organic contaminants. A nanoporous activated carbon cloth with a surface area of ∼1220 m g and a pore volume of ∼0.42 cm g was produced by chemical impregnation, carbonisation and high-temperature CO activation of a commercially available viscose rayon cloth.
View Article and Find Full Text PDFNanotubes made of boron nitride (BN) and carbon have attracted considerable attention within the literature due to their unique mechanical, electrical and thermal properties. In this work, BN and carbon nanotubes, exhibiting high purity (>99%) and similar surface areas (~200 m/g), were systematically investigated for their thermal stability and oxidation behavior by combining thermal gravimetric analysis and differential scanning calorimetry methods at temperatures of up to ~1300 °C under a synthetic air flow environment. The BN nanotubes showed a good resistance to oxidation up to ~900 °C and fully transformed to boron oxide up to ~1100 °C, while the carbon nanotubes were stable up to ~450 °C and almost completely combusted up to ~800 °C.
View Article and Find Full Text PDF