Publications by authors named "Nikolaos Karakostas"

A comparative study of the photophysical properties of octupolar pyridyl-terminated triphenylamine molecule, with its quadrupolar and dipolar analogues, by means of ambient and low temperature steady state spectroscopy and femtosecond to nanosecond time-resolved fluorescence spectroscopy is reported. The push-pull molecules bear triphenylamine electron donating core, pyridine peripheral electron acceptors, and acetylene π-bridge. The samples were studied in solvents of varying polarity and also upon addition of small amounts of acetic acid to induce protonation of the pyridine group.

View Article and Find Full Text PDF

We present here the self-assembly of a green-emitting metallosupramolecular rhomboid into a rigid, highly-ordered 3D multichromophoric network through the mediation of a tetra-anionic violet-blue molecular emitter. Control was obtained on the spatial topology, the electronic energy landscape and the fluorescence polarization of the interacting dipoles.

View Article and Find Full Text PDF

Purpose: Serum and bile tumor markers are under intense scrutiny for the diagnosis of malignant disease. The purpose of our study was to report the usefulness of serum and bile tumor markers for the discrimination between benign and malignant pancreatobiliary diseases.

Methods: Between March 2010 and May 2013, 95 patients with obstructive jaundice or history of biliary obstruction, were included in the study.

View Article and Find Full Text PDF

We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor-acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons.

View Article and Find Full Text PDF

The coordination-driven synthesis of a rhomboid cavitand composed of two different Bodipys and its inclusion complex with 1,3,6,8-tetrasulfopyrene via ionic self-assembly was established by X-ray crystallography. Highly efficient and unidirectional intra-host and guest-to-host energy transfer was demonstrated by femtosecond fluorescence spectroscopy.

View Article and Find Full Text PDF

Two covalently linked porphyrin-polyoxometalate hybrids have been prepared: an Anderson-type hexamolybdate [N(C(4)H(9))(4)](3)[MnMo(6)O(18){(OCH(2))(3)CNHCO(ZnTPP)}(2)] with two pendant zinc(II)-tetraphenylporphyrins, and a Dawson-type vanadotungstate [N(C(4)H(9))(4)](5)H[P(2)V(3)W(15)O(59){(OCH(2))(3)CNHCO(ZnTPP)}] with one porphyrin. Electrochemical studies show independent redox processes for the organic and inorganic parts at usual potentials. Photophysical studies reveal an electron transfer from the excited porphyrin to the Dawson polyoxometalate, but not to the Anderson polyoxometalate.

View Article and Find Full Text PDF

We herein present the supramolecular construction of a completely fluorescent unquenched multichromophoric wheel consisting of boron dipyrromethene dyes arranged perpendicularly to the circular plane.

View Article and Find Full Text PDF

We present herein a host-guest supramolecular system by which we were able to obtain precise control of the stereospecificity of a new and unusual adiabatic photoisomerization reaction capable of restoring reversibly the original configuration. The host-guest system is composed of (a) a naphthalene ring linked centrosymmetrically-via sp(2) hybridized oxygen atoms-with methoxytriethyleneglycol chains (1) and (b) a nanotubular cage formed by four self-assembled face-to-face β-cyclodextrins threaded onto the long "axle" of 1. The compound 1 can exist in distinct cis,cis, cis,trans, and trans,trans conformations that are spectrally distinguishable (see Scheme 1 ).

View Article and Find Full Text PDF

The two sp(3) hybridized fluorine atoms of a Bodipy dye have been synthetically replaced with the linear donor ligand 4-ethynylpyridine (-C≡C-Py) to form a rigid and highly symmetrical 109.5° building block in which the fluorophore subunit is vertically aligned to the plane formed by the -C≡C-Py donors. Upon reaction of the above tecton with a 90° organoplatinum acceptor unit, an intensely fluorescent rhomboid cavitand was manifested in solution.

View Article and Find Full Text PDF

This work provides an in-depth look at the bimolecular free-electron transfer (FET) from bisubstituted (amine and -CR(2)SiMe(3) groups) aromatic molecules to the solvent radical cations of n-BuCl. Because of the low rotational barriers, the substrates obtain all possible arrangements in solution. The electron jump is an unhindered process that does not require a defined encounter complex.

View Article and Find Full Text PDF

Background: Experimental studies investigating transgastric endoscopic surgery report closure of the gastric wall incision with clips. The author of this report describes endoloop placement as an alternative, equally efficient, faster method for gastrotomy closure.

Methods: Eight female pigs with a mean weight of 30 kg were used.

View Article and Find Full Text PDF

The primary products of the bimolecular free electron transfer (FET) from aromatic sulfides (PhSCH2Ph, PhSCHPh2, PhSCPh3) to n-butyl chloride radical cations are two radical cation conformers: a dissociative and a metastable one. In analogy with formerly studied donor systems, this result seems to reflect femtosecond oscillations in the ground state of the sulfides such as torsion motions around the Ar-S bond. This motion is accompanied by a marked electron fluctuation within the HOMO (or the n) orbitals.

View Article and Find Full Text PDF

Parent radical cations of nonpolar solvents (alkanes and alkyl chlorides) ionize 9-(trimethylsilyl)xanthenes and 9-(trimethylsilyl)fluorenes in a diffusion-controlled electron transfer. The actual electron jump as the deciding part of the process does not require a defined encounter complex, and therefore the reactants are not subjected to any geometry optimization. Considering the molecule dynamics of the donors, bending motions of the silyl group are concerted with fluctuations of the highest occupied molecular orbital electrons.

View Article and Find Full Text PDF