Publications by authors named "Nikolaos Giakoumakis"

Due to the high demand and the increasing production rate of plastic materials, vast amounts of wastes are generated every year. An important fraction of these wastes contain polystyrene (PS), which is seldom recycled, neither mechanically nor chemically. While several chemical recycling strategies have been developed, they are either very energy-demanding or produce chemicals that can hardly be employed in the synthesis of plastics (e.

View Article and Find Full Text PDF

The structural variability and chemical stability of metal phosphonates under harsh conditions are attractive attributes that have drawn considerable attention in recent years. As the need for more sustainable solutions rises, the demand for novel and tolerant materials also increases. Thus, herein we report, for the first time, the synthesis of a novel diphosphonic organic linker named pyrazole diphenyl phosphonate (PZDP), envisioning the fabrication of durable metal phosphonates.

View Article and Find Full Text PDF

Background/aim: Radiotherapy plays a key role in the treatment of gynecological cancer. Modern radiotherapy techniques with external beams (e-RT) are applied in a broad spectrum of gynecological cancer cases. However, high radiation doses, affecting normal tissue adjacent to cancer, represent the main disadvantage of e-RT regimens.

View Article and Find Full Text PDF

Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS.

View Article and Find Full Text PDF

Aneuploidy, an unbalanced number of chromosomes, is highly deleterious at the cellular level and leads to senescence, a stress-induced response characterized by permanent cell-cycle arrest and a well-defined associated secretory phenotype. Here, we use a Drosophila epithelial model to delineate the pathway that leads to the induction of senescence as a consequence of the acquisition of an aneuploid karyotype. Whereas aneuploidy induces, as a result of gene dosage imbalance, proteotoxic stress and activation of the major protein quality control mechanisms, near-saturation functioning of autophagy leads to compromised mitophagy, accumulation of dysfunctional mitochondria, and the production of radical oxygen species (ROS).

View Article and Find Full Text PDF