Background: Real-time multispectral imaging (rMSI) simultaneously provides white light (WL), photodynamic diagnosis (PDD) images, and a real-time fusion of both. It may improve the detection of bladder tumors. However, rMSI has not been used for transurethral biopsy or resection so far.
View Article and Find Full Text PDFBackground: Various imaging modalities can be used in addition to white light (WL) to improve detection of bladder cancer (BC).
Objective: To use real-time multispectral imaging (rMSI) during urethrocystoscopy to combine different imaging modalities to achieve multiparametric cystoscopy (MPC).
Design, Setting, And Participants: The rMSI system consisted of a camera with a spectral filter, a multi-LED light source, a microcontroller, and a computer for display and data acquisition.
Fluorescence imaging can reveal functional, anatomical or pathological features of high interest in medical interventions. We present a novel method to record and display in video rate multispectral color and fluorescence images over the visible and near infrared range. The fast acquisition in multiple channels is achieved through a combination of spectral and temporal multiplexing in a system with two standard color sensors.
View Article and Find Full Text PDFFluorescence-guided surgical procedures are employed in an increasing number of applications such as tumor delineation, blood perfusion, and sentinel lymph node detection. A new generation of fluorescent probes is expected to increase the number of applications and improve efficiency. Yet, there are no available imaging methods to take full advantage of the forthcoming targeting technologies.
View Article and Find Full Text PDFMolecular optoacoustic (photoacoustic) imaging typically relies on the spectral identification of absorption signatures from molecules of interest. To achieve this, two or more excitation wavelengths are employed to sequentially illuminate tissue. Due to depth-related spectral dependencies and detection related effects, the multispectral optoacoustic tomography (MSOT) spectral unmixing problem presents a complex non-linear inversion operation.
View Article and Find Full Text PDFWith rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM).
View Article and Find Full Text PDFPurpose: A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies.
Procedures: Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors.
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method.
View Article and Find Full Text PDFFluorescence molecular tomography of tissues is a method that three-dimensionally resolves fluorescence biodistribution in vivo, with applications in small-animal research and pre-clinical diagnostics. There are many alternative imaging geometries in optical tomographic experimental systems, but in general, all imaging setups consist of four subsystems: illumination, animal mount, imaging, and automation and data acquisition (i.e.
View Article and Find Full Text PDFWe reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate.
View Article and Find Full Text PDFOptoacoustic imaging has been primarily implemented in the time domain, i.e., using ultrashort nanosecond laser pulses for illumination.
View Article and Find Full Text PDFFor centuries, biological discoveries were based on optical imaging, in particular microscopy but also several chromophoric assays and photographic approaches. With the recent emergence of methods appropriate for bio-marker in vivo staining, such as bioluminescence, fluorescent molecular probes and proteins, as well as nanoparticle-based targeted agents, significant attention has been shifted toward in vivo interrogations of different dynamic biological processes at the molecular level. This progress has been largely supported by the development of advanced tomographic imaging technologies suitable for obtaining volumetric visualization of bio-marker distributions in small animals at a whole-body or whole-organ scale, an imaging frontier that is not accessible by the existing tissue-sectioning microscopic techniques due to intensive light scattering beyond the depth of a few hundred microns.
View Article and Find Full Text PDFWe have developed a spectral inversion method for three-dimensional tomography of far-red and near-infrared fluorescent proteins in animals. The method was developed in particular to address the steep light absorption transition of hemoglobin from the visible to the far-red occurring around 600 nm. Using an orthotopic mouse model of brain tumors expressing the red-shifted fluorescent protein mCherry, we demonstrate significant improvements in imaging accuracy over single-wavelength whole body reconstructions.
View Article and Find Full Text PDFMultispectral optoacoustic (photoacoustic) tomography (MSOT) is a hybrid modality that can image through several millimeters to centimeters of diffuse tissues, attaining resolutions typical of ultrasound imaging. The method can further identify tissue biomarkers by decomposing the spectral contributions of different photo-absorbing molecules of interest. In this work we investigate the performance of blind source unmixing methods and spectral fitting approaches in decomposing the contributions of fluorescent dyes from the tissue background, based on MSOT measurements in mice.
View Article and Find Full Text PDFGaussia luciferase (Gluc) is a sensitive reporter for studying different biological processes such as gene expression, promoter activity, protein-protein interactions, signal transduction, as well as tumor cell growth and response to therapy. Since Gluc is naturally secreted, the kinetics of these processes can be monitored in real-time by measuring an aliquot of conditioned medium in culture or a few microliters of blood in vivo at different time points. Gluc catalyzes light emission with a short half-life which is unfavorable for certain applications.
View Article and Find Full Text PDFWe interrogate the ability of free-space fluorescence tomography to image small animals in vivo using charge-coupled device (CCD) camera measurements over 360-deg noncontact projections. We demonstrate the performance of normalized dual-wavelength measurements that are essential for in-vivo use, as they account for the heterogeneous distribution of photons in tissue. In-vivo imaging is then showcased on mouse lung and brain tumors cross-validated by x-ray microcomputed tomography and histology.
View Article and Find Full Text PDFThe discovery of new fluorescent proteins (FPs) that emit in the far-red part of the spectrum, where light absorption from tissue is significantly lower than in the visible, offers the possibility for noninvasive biological interrogation at the entire organ or small animal level in vivo. The performance of FPs in deep-tissue imaging depends not only on their optical characteristics, but also on the wavelength-dependent tissue absorption and the depth of the fluorescence activity. To determine the optimal choice of FP and illumination wavelength, we compared the performance of five of the most promising FPs: tdTomato, mCherry, mRaspberry, mPlum, and Katushka.
View Article and Find Full Text PDF