Publications by authors named "Nikolaos Balatsos"

The poly(A) tail is a dynamic structure at the 3'- end of the majority of RNA polymerase II transcripts. It is a critical feature, particularly for mRNAs, as the length of the poly(A) tail regulates their translational efficiency and lifespan. The shortening of the tail is catalyzed by deadenylases that trim and finally remove it, triggering mRNA degradation.

View Article and Find Full Text PDF

Background: Only one study has reported the presence of extracellular vesicles (EVs) in COPD patients' sputum. Thus, we aimed to isolate and characterize EVs from COPD and healthy individuals' sputum.

Methods: A total of 20 spontaneous sputum samples from COPD patients (m/f: 19/1) and induced sputum samples from healthy controls (m/f: 8/2) were used for EV isolation.

View Article and Find Full Text PDF

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs.

View Article and Find Full Text PDF

The poly(A) tail at the 3' end of mRNAs determines their stability, translational efficiency, and fate. The shortening of the poly(A) tail, and its efficient removal, triggers the degradation of mRNAs, thus, regulating gene expression. The process is catalyzed by a family of enzymes, known as deadenylases.

View Article and Find Full Text PDF

Objective: The study of the circadian clock and its mechanisms is easily facilitated through clock resetting in cell culture. Among the various established synchronizers of the circadian clock in cell culture (temperature, serum shock, glucocorticoids), the artificial glucocorticoid Dexamethasone (DEX) is the most widely used. DEX treatment as a protocol to reset the circadian clock in culture gives simple readout with minimal laboratory requirements.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-secreted, lipid membrane-enclosed nanoparticles without functional nucleus. EV is a general term that includes various subtypes of particles named microvesicles, microparticles, ectosomes or exosomes. EVs transfer RNA, DNA and protein cargo between proximal and distant cells and tissues, thus constituting an organism-wide signal transduction network.

View Article and Find Full Text PDF
Article Synopsis
  • The 24-hour molecular clock is linked to stable rhythms in mRNA expression, where the length of the poly(A) tail is crucial for mRNA lifespan and is shortened by enzymes called deadenylases.
  • The study focused on Hesperin, a circadian deadenylase in plants, identifying its catalytic site using advanced mutagenesis techniques and a specialized vector.
  • The research combined biochemical experiments and molecular modeling to reveal the role of AtHESPERIN in the deadenylase family and enhance understanding of how circadian mechanisms regulate mRNA turnover.
View Article and Find Full Text PDF

Objective: The main objective of the study was to compare preoperative to postoperative levels of urine-Cysteinyl leukotrienes (uCysLT) in children undergoing adenotonsillectomy (AT) for obstructive sleep apnea (OSA) in order to investigate whether exaggerated leukotriene activity is the cause or consequence of OSA.

Methods And Materials: A prospective study was conducted on non-obese children (4-10 years old) referred for overnight PSG. Children with moderate/severe OSA treated with AT were included.

View Article and Find Full Text PDF

Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light.

View Article and Find Full Text PDF

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life.

View Article and Find Full Text PDF

Human Angiogenin (hAng) is a member of the ribonuclease A superfamily and a potent inducer of neovascularization. Protein interactions of hAng in the nucleus and cytoplasm of the human umbilical vein cell line EA.hy926 have been investigated by mass spectroscopy.

View Article and Find Full Text PDF

In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of death in developed countries. The aetiology is currently multifactorial, thus making them very difficult to prevent. Preclinical models of atherothrombotic diseases, including vulnerable plaque-associated complications, are now providing significant insights into pathologies like atherosclerosis, and in combination with the most recent advances in new non-invasive imaging technologies, they have become essential tools to evaluate new therapeutic strategies, with which can forecast and prevent plaque rupture.

View Article and Find Full Text PDF

We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics.

View Article and Find Full Text PDF

Eosinophil derived neurotoxin (EDN) is an eosinophil secretion protein and a member of the Ribonuclease A (RNase A) superfamily involved in the immune response system and inflammatory disorders. The pathological actions of EDN are strongly dependent on the enzymatic activity and therefore, it is of significant interest to discover potent and specific inhibitors of EDN. In this framework we have assessed the inhibitory potency of triazole double-headed ribonucleosides.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer mortality worldwide, mainly due to late diagnosis, poor prognosis and tumor heterogeneity. Thus, the need for biomarkers that will aid classification, treatment and monitoring remains intense and challenging and depends on the better understanding of the tumor pathobiology and underlying mechanisms. The deregulation of gene expression is a hallmark of cancer and a critical parameter is the stability of mRNAs that may lead to increased oncogene and/or decreased tumor suppressor transcript and protein levels.

View Article and Find Full Text PDF

Importance: Cysteinyl leukotrienes (CysLTs) potentially promote adenotonsillar hypertrophy in children with obstructive sleep apnea (OSA). Previous studies have identified CysLTs and their receptors in tonsillar tissue from children with OSA.

Objective: To demonstrate expression of the leukotriene biosynthetic enzymes 5-lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP), leukotriene A(4) hydrolase (LTA(4)H), and leukotriene C(4) synthase (LTC(4)S) in T and B tonsillar lymphocytes from pediatric patients with OSA.

View Article and Find Full Text PDF

Deadenylases catalyze the shortening of the poly(A) tail at the messenger ribonucleic acid (mRNA) 3'-end in eukaryotes. Therefore, these enzymes influence mRNA decay, and constitute a major emerging group of promising anti-cancer pharmacological targets. Herein, we conducted full phylogenetic analyses of the deadenylase homologs in all available genomes in an effort to investigate evolutionary relationships between the deadenylase families and to identify invariant residues, which probably play key roles in the function of deadenylation across species.

View Article and Find Full Text PDF

Poly(A)-specific ribonuclease (PARN) is an exoribonuclease/deadenylase that degrades 3'-end poly(A) tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation.

View Article and Find Full Text PDF

Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low μM inhibition constant (K(i)) values with the ones having a triazolo linker being more potent than the ones without.

View Article and Find Full Text PDF

Objectives: Cysteinyl leukotrienes have been implicated in the pathogenesis of adenotonsillar hypertrophy in children with obstructive sleep apnea (OSA). This study aimed to quantify the expression of cysteinyl leukotriene receptors (CysLT(1), CysLT(2)) by tonsillar lymphocyte subpopulations from children with OSA and to make comparisons to lymphocyte subpopulations from control subjects with recurrent tonsillitis (RT).

Methods: Tonsillar tissue from children with OSA or RT was studied for CysLT(1) and CysLT(2) expression by RT-PCR, flow cytometry (FC), and immunofluorescence.

View Article and Find Full Text PDF

Background/aims: The degradation of mRNA is a key process in the control of gene expression correlated to anomalous cell proliferation. The rate-limiting step of mRNA degradation is the removal of the poly(A) tail by deadenylases. However, studies on deadenylase expression in cancer are limited.

View Article and Find Full Text PDF

Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that efficiently degrades poly(A) tails and regulates, in part, mRNA turnover rates. We have previously reported that adenosine- and cytosine-based glucopyranosyl nucleoside analogues with adequate tumour-inhibitory effect could effectively inhibit PARN. In the present study we dissect the mechanism of a more drastic inhibition of PARN by novel glucopyranosyl analogues bearing uracil, 5-fluorouracil or thymine as the base moiety.

View Article and Find Full Text PDF

Poly(A)-specific ribonuclease (PARN) is a cap-interacting deadenylase that mediates, together with other exonucleases, the eukaryotic mRNA turnover and thus is actively involved in the regulation of gene expression. Aminoglycosides and natural nucleotides are the only reported modulators of human PARN activity, so far. In the present study, we show that synthetic nucleoside analogues bearing a fluoro-glucopyranosyl sugar moiety and benzoyl-modified cytosine or adenine as a base can effectively inhibit human PARN.

View Article and Find Full Text PDF