Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro- and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for example, are well known and have been successfully replicated using micro- and nanofabrication.
View Article and Find Full Text PDFTwo simple, mechanical modifications are introduced to a consumer-grade inkjet printer to greatly increase its applicability. First, roller isolation bars are added to unlock multiple prints on the same substrate without smearing. This enables printing on a diverse set of substrates (rigid, elastic, liquid, granular, and sticky).
View Article and Find Full Text PDFOrally ingestible medical devices provide significant advancement for diagnosis and treatment of gastrointestinal (GI) tract-related conditions. From micro- to macroscale devices, with designs ranging from very simple to complex, these medical devices can be used for site-directed drug delivery in the GI tract, real-time imaging and sensing of gut biomarkers. Equipped with uni-direction release, or self-propulsion, or origami design, these microdevices are breaking the barriers associated with drug delivery, including biologics, across the GI tract.
View Article and Find Full Text PDFAdding roughness to hydrophilic surfaces is generally expected to enhance their wetting by water. Indeed, global free energy minimization predicts decreasing contact angles when roughness factor or surface energy increases. However, experimentally it is often found that water spreading on rough surfaces is impeded by pinning effects originating from local free energy minima; an effect, largely neglected in scientific literature.
View Article and Find Full Text PDFDroplet array chips were realized using an alignment-free fabrication process in silicon. The chips were textured with a homogeneous nano-scale surface roughness but were partially covered with a self-assembled monolayer of perfluorodecyltrichlorosilane (FDTS), resulting in a super-biphilic surface. When submerged in water and withdrawn again, microliter sized droplets are formed due to pinning of water on the hydrophilic spots.
View Article and Find Full Text PDFThe random nature of dropwise condensation impedes spatial control hereof and its use for creating microdroplet arrays, yet here we demonstrate the spatial control of dropwise condensation on a chemically homogeneous pillar array surface, yielding ∼8000 droplets/mm under normal atmospheric pressure conditions. The studied pillar array surface is defined by photolithography and etched in silicon by deep reactive ion etching. Subsequently, the surface is covered with a self-assembled monolayer of perfluorodecyltrichlorosilane (FDTS) to render the surface hydrophobic.
View Article and Find Full Text PDF