The field of multi-robot systems (MRS) has recently been gaining increasing popularity among various research groups, practitioners, and a wide range of industries. Compared to single-robot systems, multi-robot systems are able to perform tasks more efficiently or accomplish objectives that are simply not feasible with a single unit. This makes such multi-robot systems ideal candidates for carrying out distributed tasks in large environments-e.
View Article and Find Full Text PDFIn the study of collective animal behavior, researchers usually rely on gathering empirical data from animals in the wild. While the data gathered can be highly accurate, researchers have limited control over both the test environment and the agents under study. Further aggravating the data gathering problem is the fact that empirical studies of animal groups typically involve a large number of conspecifics.
View Article and Find Full Text PDFHow does the spread of behavior affect consensus-based collective decision-making among animals, humans or swarming robots? In prior research, such propagation of behavior on social networks has been found to exhibit a transition from simple contagion-i.e, based on pairwise interactions-to a complex one-i.e.
View Article and Find Full Text PDFAnimals, humans, and multi-robot systems operate in dynamic environments, where the ability to respond to changing circumstances is paramount. An effective collective response requires suitable information transfer among agents and thus critically depends on the interaction network. To investigate the influence of the network topology on collective response, we consider an archetypal model of distributed decision-making and study the capacity of the system to follow a driving signal for varying topologies and system sizes.
View Article and Find Full Text PDF