The occurrence and the style of volcanic eruptions are largely controlled by the ways in which magma is stored and transported from the mantle to the surface through the crust. Nevertheless, our understanding of the deep roots of volcano-magmatic systems remains very limited. Here, we use the sources of seismovolcanic tremor to delineate the active part of the magmatic system beneath the Klyuchevskoy Volcanic Group in Kamchatka, Russia.
View Article and Find Full Text PDFVolcanoes are traditionally considered isolated with an activity that is mostly independent of the surrounding, with few eruptions only (< 2%) associated with a tectonic earthquake trigger. Evidence is now increasing that volcanoes forming clusters of eruptive centers may simultaneously erupt, show unrest, or even shut-down activity. Using infrared satellite data, we detail 20 years of eruptive activity (2000-2020) at Klyuchevskoy, Bezymianny, and Tolbachik, the three active volcanoes of the Klyuchevskoy Volcanic Group (KVG), Kamchatka.
View Article and Find Full Text PDFDeep long-period (DLP) earthquakes observed beneath active volcanoes are sometimes considered as precursors to eruptions. Their origin remains, however, unclear. Here, we present a possible DLP generating mechanism related to the rapid growth of gas bubbles in response to the slow decompression of over-saturated magma.
View Article and Find Full Text PDFThe Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba.
View Article and Find Full Text PDFObserved along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources.
View Article and Find Full Text PDFCross-correlation of 1 month of ambient seismic noise recorded at USArray stations in California yields hundreds of short-period surface-wave group-speed measurements on interstation paths. We used these measurements to construct tomographic images of the principal geological units of California, with low-speed anomalies corresponding to the main sedimentary basins and high-speed anomalies corresponding to the igneous cores of the major mountain ranges. This method can improve the resolution and fidelity of crustal images obtained from surface-wave analyses.
View Article and Find Full Text PDFIntermediate-period Rayleigh and Love waves propagating across Tibet indicate marked radial anisotropy within the middle-to-lower crust, consistent with a thinning of the middle crust by about 30%. The anisotropy is largest in the western part of the plateau, where moment tensors of earthquakes indicate active crustal thinning. The preferred orientation of mica crystals resulting from the crustal thinning can account for the observed anisotropy.
View Article and Find Full Text PDFIn the northwest Pacific Ocean, a sharp corner in the boundary between the Pacific plate and the North American plate joins a subduction zone running along the southern half of the Kamchatka peninsula with a region of transcurrent motion along the western Aleutian arc. Here we present images of the seismic structure beneath the Aleutian-Kamchatka junction and the surrounding region, indicating that: the subducting Pacific lithosphere terminates at the Aleutian-Kamchatka junction; no relict slab underlies the extinct northern Kamchatka volcanic arc; and the upper mantle beneath northern Kamchatka has unusually slow shear wavespeeds. From the tectonic and volcanic evolution of Kamchatka over the past 10 Myr (refs 3-5) we infer that at least two episodes of catastrophic slab loss have occurred.
View Article and Find Full Text PDF