Publications by authors named "Nikolai L Chepelev"

Chemicals in commerce or under development must be assessed for genotoxicity; assessment is generally conducted using validated assays (e.g. Tk mouse lymphoma assay) as part of a regulatory process.

View Article and Find Full Text PDF

Acrylamide (AA) exposure causes increased incidence of forestomach, lung, and Harderian gland tumors in male mice. One hypothesized mode of action (MOA) for AA-carcinogenicity includes genotoxicity/mutagenicity as a key event, possibly resulting from AA metabolism to the direct genotoxic metabolite glycidamide. Alternatively, altered calcium signaling (CS) has been proposed as a central key event in the MOA.

View Article and Find Full Text PDF

Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction.

View Article and Find Full Text PDF

Acrylamide (AA) exposure in 2-year cancer bioassays leads to thyroid, but not liver, adenomas and adenocarcinomas in rats. Hypothesized modes of action (MOAs) include genotoxicity/mutagenicity, or thyroid hormone dysregulation. To examine the plausibility of these two or any alternative MOAs, RNA-sequencing was performed on the thyroids and livers of AA-exposed rats, in parallel with measurement of genotoxicity (blood micronucleus and Pig-a mutant frequency) and serum thyroid hormone levels, following the exposure of male Fischer 344/DuCrl rats to 0.

View Article and Find Full Text PDF

Acrylamide (AA) at high exposure levels is neurotoxic, induces testicular toxicity, and increases dominant lethal mutations in rats. RNA-sequencing in testes was used to identify differentially expressed genes (DEG), explore AA-induced pathway perturbations that could contribute to AA-induced testicular toxicity and then used to derive a benchmark dose (BMD). Male F344/DuCrl rats were administered 0.

View Article and Find Full Text PDF

There is increasing interest in the use of quantitative transcriptomic data to determine benchmark dose (BMD) and estimate a point of departure (POD) for human health risk assessment. Although studies have shown that transcriptional PODs correlate with those derived from apical endpoint changes, there is no consensus on the process used to derive a transcriptional POD. Specifically, the subsets of informative genes that produce BMDs that best approximate the doses at which adverse apical effects occur have not been defined.

View Article and Find Full Text PDF

Benzo[a]pyrene (BaP) is a genotoxic carcinogen and a neurotoxicant. The neurotoxicity of BaP is proposed to arise from either genotoxicity leading to neuronal cell death, or perturbed expression of N-methyl-d-aspartate receptor (NMDAR) subunits. To explore these hypotheses, we profiled hippocampal gene expression of adult male Muta(™) Mouse administered 0, 1, 35, or 70 mg BaP/kg bw per day by oral gavage for 3 days.

View Article and Find Full Text PDF

Dibenzo[def,p]chrysene (DBC) is the most carcinogenic polycyclic aromatic hydrocarbon (PAH) examined to date. We investigated the immunotoxicity of DBC, manifested as spleen atrophy, following acute exposure of adult MutaMouse males by oral gavage. Mice were exposed to 0, 2.

View Article and Find Full Text PDF

Oxidative stress is associated with many physiological and pathological processes, as well as xenobiotic metabolism, leading to the oxidation of biomacromolecules, including DNA. Therefore, efficient detection of DNA oxidation is important for a variety of research disciplines, including medicine and toxicology. A common biomarker of oxidatively damaged DNA is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo; often erroneously referred to as 8-hydroxy-2'-deoxyguanosine (8-OH-dGuo or 8-oxo-dG)).

View Article and Find Full Text PDF

The "cap'n'collar" bZIP transcription factor Nrf1 heterodimerizes with small Maf proteins to bind to the Antioxidant Response Element/Electrophile Response Element to transactivate antioxidant enzyme, phase 2 detoxification enzyme and proteasome subunit gene expression. Nrf1 specifically regulates pathways in lipid metabolism, amino acid metabolism, proteasomal degradation, the citric acid cycle, and the mitochondrial respiratory chain. Nrf1 is maintained in the endoplasmic reticulum (ER) in an inactive glycosylated state.

View Article and Find Full Text PDF

Benzo[a]pyrene (BaP) is a well-studied environmental compound that requires metabolic activation to have a carcinogenic effect. The neurotoxicity of BaP has received considerably less attention than its carcinogenicity. Environmental exposure to BaP correlates with impaired learning and memory in adults, and poor neurodevelopment in children.

View Article and Find Full Text PDF

The use of short-term toxicogenomic tests to predict cancer (or other health effects) offers considerable advantages relative to traditional toxicity testing methods. The advantages include increased throughput, increased mechanistic data, and significantly reduced costs. However, precisely how toxicogenomics data can be used to support human health risk assessment (RA) is unclear.

View Article and Find Full Text PDF

Reliable quantification of gene and protein expression has potential to contribute significantly to the characterization of hypothesized modes of action (MOA) or adverse outcome pathways for critical effects of toxicants. Quantitative analysis of gene expression by benchmark dose (BMD) modeling has been facilitated by the development of effective software tools. In contrast, protein expression is still generally quantified by a less robust effect level (no or lowest [adverse] effect levels) approach, which minimizes its potential utility in the consideration of dose-response and temporal concordance for key events in hypothesized MOAs.

View Article and Find Full Text PDF

Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM).

View Article and Find Full Text PDF

Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins for baby bottles, liners of canned food, and many other consumer products. Previously, BPA has been shown to reduce the activity of several antioxidant enzymes, which may contribute to oxidative stress. However, the underlying mechanism of the BPA-mediated effect upon antioxidant enzyme activity is unknown.

View Article and Find Full Text PDF

Background: Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully.

View Article and Find Full Text PDF

Constituting an integral part of a heme's porphyrin ring, iron is essential for supplying cells and tissues with oxygen. Given tight links between oxygen delivery and iron availability, it is not surprising that iron deprivation and oxygen deprivation (hypoxia) have very similar consequences at the molecular level. Under hypoxia, the expression of major iron homeostasis genes including transferrin, transferrin receptor, ceruloplasmin, and heme oxygenase-1 is activated by hypoxia-inducible factors to provide increased iron availability for erythropoiesis in an attempt to enhance oxygen uptake and delivery to hypoxic cells.

View Article and Find Full Text PDF