In this work, we tackle the problem of the spatially selective optical excitation of spin dynamics in structures with multiple magnetic layers. The 120 fs circularly polarized laser pulses were used to launch magnetization precession in an all-dielectric magneto-photonic crystals (MPC) formed by magnetic layers sandwiched between and inside two magnetic Bragg mirrors. Optical pump-probe experiments reveal magnetization precession triggered via ultrafast inverse Faraday effect with an amplitude strongly dependent on the pump central wavelength: maxima of the amplitude are achieved for the wavelength tuned at the cavity resonance and at the edge of the photonic bandgap.
View Article and Find Full Text PDFNowadays, spintronics considers magnetic domain walls as a kind of nanodeviсe that demands for switching much less energy in comparison to homogeneous process. We propose and demonstrate a new concept for the light control via electric field applied locally to a magnetic domain wall playing the role of nanodevice. In detail, we charged a 15-μm-thick metallic tip to generate strong non-uniform electric field in the vicinity of the domain wall in the iron garnet film.
View Article and Find Full Text PDF